
1

Generic Node Removal for Factor-Graph SLAM
Nicholas Carlevaris-Bianco, Student Member, IEEE, Michael Kaess, Member, IEEE, and

Ryan M. Eustice, Senior Member, IEEE

Abstract—This paper reports on a generic factor-based method
for node removal in factor-graph simultaneous localization and
mapping (SLAM), which we call generic linear constraints
(GLCs). The need for a generic node removal tool is motivated
by long-term SLAM applications whereby nodes are removed
in order to control the computational cost of graph optimiza-
tion. GLC is able to produce a new set of linearized factors
over the elimination clique that can represent either the true
marginalization (i.e., dense GLC), or a sparse approximation
of the true marginalization using a Chow-Liu tree (i.e., sparse
GLC). The proposed algorithm improves upon commonly used
methods in two key ways: First, it is not limited to graphs with
strictly full-state relative-pose factors and works equally well with
other low-rank factors such as those produced by monocular
vision. Second, the new factors are produced in a way that
accounts for measurement correlation, a problem encountered
in other methods that rely strictly upon pairwise measurement
composition. We evaluate the proposed method over multi-
ple real-world SLAM graphs and show that it outperforms
other recently-proposed methods in terms of Kullback-Leibler
divergence. Additionally, we experimentally demonstrate that the
proposed GLC method provides a principled and flexible tool to
control the computational complexity of long-term graph SLAM,
with results shown for 34.9 h of real-world indoor-outdoor data
covering 147.4 km collected over 27 mapping sessions spanning
a period of 15 months.

Index Terms—Simultaneous localization and mapping
(SLAM), long-term autonomy, mobile robotics, factor graphs,
marginalization.

I. INTRODUCTION

Graph based simultaneous localization and mapping

(SLAM) [3–9] has been demonstrated successfully over a

wide variety of applications. Unfortunately, the standard graph

SLAM formulation, which does not marginalize out past robot

states, is not ideal for long-term applications. The robot must

continually add nodes and measurements to stay localized even

if it is working in a finite region, causing the size of the graph

to grow with spatial extent and exploration time (Fig. 1(c) and

(e)).

This paper proposes a method to address the long-term

SLAM complexity challenge by allowing one to arbitrarily

remove nodes from the graph, thereby reducing inference

This work was supported in part by the National Science Foundation under
award IIS-0746455, by the Office of Naval Research under awards N00014-
12-1-0092 and N00014-12-1-0093, and by the Naval Sea Systems Command
through the Naval Engineering Education Center under award N65540-10-
C-0003. Portions of this work were presented in part at the 2013 IEEE
International Conference on Robotics and Automation [1], and the 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems [2].

N. Carlevaris-Bianco is with the Department of Electrical Engineering &
Computer Science, University of Michigan, carlevar@umich.edu.

M. Kaess is with the Robotics Institute, Carnegie Mellon University,
kaess@cmu.edu.

R. Eustice is with the Department of Naval Architecture & Marine
Engineering, University of Michigan, eustice@umich.edu.

(a) Segway Robot (b) Sample Session Trajectory

(c) Full Graph (Top View) (d) GLC Reduced (Top View)

(e) Full Graph (Time Scaled) (f) GLC Reduced (Time Scaled)

Fig. 1: SLAM graphs constructed by a Segway robot (a) after 27
mapping sessions (b) spanning a period of 15 months. The full
graph without node removal ((c) and (e)) is compared with a graph
from which nodes have been removed using GLC ((d) and (f)).
Links include odometry (blue), 3D LIDAR scan matching (green)
and generic linear constraints (magenta). The bottom row ((e) and
(f)) shows an oblique view scaled by time in the z-axis, highlighting
the difference between the full and GLC-reduced graphs; each layer
along the z-axis represents a mapping session.

complexity and allowing for graph maintainability. We refer

to this method as generic linear constraints (GLCs). We

demonstrate that by removing spatially redundant nodes using

GLC, the computational complexity of the graph optimization

can be bounded with respect to exploration time (Fig. 1(d) and

(f)).

A. Previous Work

Several prior methods have been proposed to slow the rate

of growth of the graph. In Ila et al. [10], an information-

theoretic approach is used to add only non-redundant nodes

and highly-informative measurements to the graph. This slows

the rate of growth but does not bound it. In Johannsson et al.

[11], new constraints are induced between existing nodes when

possible, instead of adding new nodes to the graph. In this

formulation the number of nodes grows only with spatial

2

extent, not with mapping duration—though the number of

factors and connectivity density within the graph still grow

with time.

Methods that work directly on the linearized information

matrix (best suited for filtering-based SLAM solutions) include

[12–14]. In Thrun et al. [12], weak links between nodes

are removed to enforce sparsity. Unfortunately, this removal

method causes the resulting estimate to be overconfident [15].

In Walter et al. [13], odometry links are removed in order to

enforce sparsity in feature-based SLAM. Recently, Vial et al.

[14] proposed an optimization-based method that minimizes

the Kullback-Leibler divergence (KLD) of the information

matrix while enforcing a sparsity pattern and the requirement

that the estimated information is conservative. This method

performs favorably in comparison with [12] and [13], but

requires a large matrix inversion in order to reduce the scope

of the optimization problem, limiting its online utility.

Recently, many works have proposed removing nodes from

the SLAM graph as a means to control the computational

complexity of the associated optimization problem [16–20].

In Konolige and Bowman [16], the environment is spatially

divided into neighborhoods and then a least-recently-used cri-

teria is used to remove nodes with the goal of keeping a small

set of example views that capture the changing appearance

of the environment. In Kretzschmar and Stachniss [18], nodes

that provide the least information to an occupancy grid are

removed. In Eade et al. [17], nodes without associated imagery

are removed. In Walcott-Bryant et al. [19], “inactive” nodes

that no longer contribute to the laser-based map (because the

environment has changed) are removed. Finally, in Wang et al.

[20], nodes are removed based on an approximation of their

information contribution to the graph.

Each of the methods described in [11, 16–20] provides

insight into the question of which nodes should be removed

from the graph; however, they all rely upon pairwise mea-

surement composition over full-state constraints, as described

in [21], to produce a new set of factors over the elimination

clique after a node is removed from the graph. Unfortunately,

pairwise measurement composition has two key drawbacks

when used for node removal. First, it is not uncommon

for a graph to be composed of many different types of

“low-rank” constraints, such as bearing-only, range-only and

other partial-state constraints. In these heterogeneous cases,

measurement composition, if even possible, quickly becomes

complicated as the constraint composition rules for all possible

pairs of measurement types must be well defined. Second,

the new constraints created by measurement composition are

often correlated. Ignoring this correlation leads to inconsistent

estimates because measurements are double counted. In some

cases it is possible to avoid double counting measurements

by discarding some of the composed measurements; however,

this comes at the cost of information loss. Additionally, for

general graph topologies, double counting measurements may

be unavoidable when using a pairwise composition scheme as

illustrated by the simple graph in Fig. 2.

The exact procedure for measurement-composition-based

node removal varies amongst existing methods. In [16–18]

the correlation between composed measurements is ignored.

In [16], all composed constraints are kept, causing fill-in

within the graph. In order to preserve sparsity, a subset of the

composed edges are pruned in [17] using a heuristic based on

node degree. In [18], composed-edge removal is guided by a

Chow-Liu tree calculated over the conditional information of

the elimination clique. To avoid measurement double counting,

[11] discards an odometry link and performs re-localization

(along the lines of [13]). Similarly, [19] uses a maximum of

two newly composed constraints at the beginning and end of

a “removal chain” (a sequence of nodes to remove) to ensure

connectivity without double counting measurements. In [20],

only the two sequential odometry constraints are compounded,

which also avoids double counting measurements.

Methods that remove nodes without measurement composi-

tion have been proposed in [1, 2, 22–24]. These methods are

based upon replacing the factors in the marginalization clique

with a linearized potential or a set of linearized potentials,

instead of potentials produced by measurement composition.

In Folkesson and Christensen [22], these linearized potentials

are referred to as “star nodes.” The dense formulation of our

proposed GLC [1] is essentially equivalent to “star nodes”

while the sparse approximate GLC replaces the dense n-

nary connectivity with a sparse tree structure. In Frese [23],

linearized potentials are used to remove nodes in cliques

within the author’s Treemap [25] algorithm.

The method recently proposed in Huang et al. [24] uses

dense linear potentials similar to star-nodes and dense-GLCs to

remove nodes from the graph. To perform edge sparsification,

the authors formulate an optimization problem that seeks to

minimize the KLD of the approximation while requiring a

conservative estimate and encouraging sparsity through L1

regularization. This optimization problem is then applied to the

linearized information matrix associated with the entire graph,

which limits its applicability to relatively small problems,

and prevents relinearization after sparsification. Using L1

regularization to promote sparsity is appealing because it does

not require the sparsity pattern to be specified—instead, it

automatically removes the least important edges. However,

because the sparsity pattern produced is arbitrary, it is unclear

how the resulting information matrix might be decomposed

into a sparse set of factors, which is important if one wishes

to exploit existing graph SLAM solvers such as iSAM [5, 9]

or g2o [26].

The recent work by Mazuran et al. [27] replaces the clique

factors with a set of non-linear virtual measurements and then

uses a numerical optimization method to find the appropriate

measurement noise for each virtual measurement. This method

produces similar results to GLC when removing nodes with a

good linearization point and improves the KLD when remov-

ing nodes with a poor linearization as the measurement can

subsequently be re-linearized. The authors also propose adding

additional virtual factors in the elimination clique beyond

a pairwise tree, which can further reduces the KLD. One

limitation of the method is that it requires the specification of

the virtual measurements and their Jacobians such that their

rank is appropriate for the information in the marginalization

potential. This is straightforward in homogeneous graphs with

full-rank constraints; however, it is not clear how one would

3

specify the virtual measurements in heterogeneous graphs with

low-rank constraints.

Linearized potentials representing the result of marginal-

ization are also used in Cunningham et al. [28] to reduce

bandwidth while transmitting graphs between robots in a

multi-robot distributed estimation framework. Nodes that are

not part of the interaction between the robots’ graphs are

removed from linearized potentials, and a graph of these

linearized potentials, referred to as a “summarized map”, is

transmitted between robots.

B. Proposed Method

The aforementioned composition-based methods have many

desirable properties. They produce a new set of factors using

the existing factors as input, the computational complexity is

only dependent upon the number of nodes and factors in the

elimination clique, and the new factors can be re-linearized

during subsequent optimization. Our proposed algorithm, re-

ferred to as generic linear constraint node removal, also seeks

to remove nodes from the graph—retaining the desirable

properties of composition-based methods, yet avoiding their

pitfalls. Specifically, the algorithm was designed so that it

meets the following criteria:

• The algorithm works equally well with non-full-state con-

straints. Constraints with lower degree of freedom (DOF)

than full-state (e.g., bearing-only, range-only and partial

state constraints) are handled under the same framework

as full-state constraints, without special consideration.

• The new factors are produced in a way that does not

double count measurement information. As we will show

in §II, methods based on the pairwise composition of

measurements produce pairwise constraints that are not

independent, which leads to inconsistency in the graph.

• The algorithm produces a new set of independent factors

using the current graph factors as input. The method does

not require the full linearized information matrix as input.

• The algorithm is able to produce constraints that can rep-

resent exact node marginalization, as well as constraints

that can represent a sparse Chow-Liu tree approximation

of the dense marginal.

• The computational complexity of the algorithm is depen-

dent only upon the number of nodes and factors in the

elimination clique, not on the size of the graph beyond

the clique.

• The algorithm does not require committing to a world-

frame linearization point, rather, the new factors are

parametrized in such a way as to use a local linearization

that is valid independent of the global reference frame.

This allows for the exploitation of methods that re-

linearize during optimization (e.g., [5, 6, 9]).

This manuscript incorporates the initial technical description

of GLC node removal, [1], and the evaluation of its appli-

cability to long-term SLAM, [2]. Additionally, we provide

new results over several standard datasets. The remainder of

this paper is outlined as follows: In Section II we discuss the

pitfalls associated with the use of measurement composition

for node removal. Our proposed method is then described in

x0 z01 x1

x3

x2

z12

z13

x0 x1

x3

x2

(a) Original graph

x0

x3

x2

z03

z02

z23

‘

‘

‘

x0

x3

x2

(b) Composition

x0

x3

x2

zs

x0

x3

x2

(c) Marginalization

Fig. 2: Measurement composition versus marginalization. Here node
x1 is removed from the original graph (a). The top row shows the
factor graph; the bottom row shows its Markov random field.

Section III and experimentally evaluated in Section IV. Finally,

Sections V and VI offer a discussion and concluding remarks.

II. PAIRWISE COMPOSITION 6= MARGINALIZATION

Consider the simple graph depicted in Fig. 2(a) where we

show both its factor graph and Markov random field (MRF)

representations. Suppose that we wish to marginalize node

x1. Using the composition notation of [21], we can compose

the pairwise measurements to produce the graph depicted in

Fig. 2(b) as follows,

z
′
02 = h1(z01, z12) = z01 ⊕ z12,

z
′
03 = h2(z01, z13) = z01 ⊕ z13,

z
′
23 = h3(z12, z13) = ⊖z12 ⊕ z13.

(1)

These composed measurements are meant to capture the fully

connected graph topology that develops in the elimination

clique once x1 has been marginalized. In [17, 18], this

composition graph forms the conceptual basis from which

their link sparsification method then acts to prune edges and

produce a sparsely connected graph. The problem with this

composition is that the pairwise edges/factors in Fig. 2(b) are

assumed to be independent, which they are not.

It should be clear that the composed measurements in (1)

are correlated, as z
′
02, z′03 and z

′
23 share common information

(e.g., z
′
02 and z

′
03 both share z01 as input), yet, if we treat

these factors as strictly pairwise, we are unable to capture

this correlation. Now consider instead a stacked measurement

model defined as

zs =





z
′
02

z
′
03

z
′
23



 = h









z01

z12

z13







 =





z01 ⊕ z12

z01 ⊕ z13

⊖z12 ⊕ z13



 . (2)

Its first-order uncertainty is given as

Σs = H





Σ01 0 0
0 Σ12 0
0 0 Σ13



H⊤,

where

H =









∂z′

02

∂z01

∂z′

02

∂z12

0
∂z′

03

∂z01

0
∂z′

03

∂z13

0
∂z′

23

∂z12

∂z′

23

∂z13









.

4

D
en

se
 E

x
ac

t
C

L
T

 A
p

p
ro

x
im

at
e

x0 z01 z23x1

x3 x4

x2

z12

z13

z0 z34

(a) Original Graph

x0 zt

x3

x2

(b) Target Info.

x0

x3

x2

x0

x3

x2

≈

(c) Sparse Approximation

x0

x3

x2w

x0

x3

x2w

(d) Reparameterize (optional)

x0

x3 x4

x2

z34

zt
glc

x0

x3 x4

x2

z34z0
glc

z03
glc

z02
glc

(e) Final Graph

Fig. 3: GLC node removal algorithm. The dense exact version follows the top row, while the sparse CLT approximate version follows
the bottom row. A sample factor graph where node x1 is to be removed is shown in (a). Here Xm = [x0,x1,x2,x3]. The factors
Zm = [z0, z01, z12, z13, z23] (highlighted in red in (a)) are those included in calculating the target information, Λt, which defines a linear
potential, zt, over the marginalization clique Xt = [x0,x2,x3] (b). In the case of CLT approximate node removal the original distribution
associated with the target information, p(Xt|Zm), is approximated using the Chow-Liu maximum-mutual-information spanning tree as
p(x0|Zm)p(x2|x0,Zm)p(x3|x0,Zm) (c). Optionally, the potentials are reparameterized with respect to x0 to avoid linearization in the
world-frame (d). New GLC factors are computed and inserted into the graph replacing Zm (highlighted in green in (e)). Note that node
removal only affects the nodes and factors within the Markov blanket of x1 (dashed line).

Here we see that Σs will be dense in order to capture the cor-

relation between the compounded measurements. Expressing

this correlation requires a trinary factor with support including

all three variables. Therefore, the joint composition in (2)

produces the factor graph shown in Fig. 2(c).

It is this inability of pairwise factors to capture correlation

between composed measurements that causes simple com-

pounding to be wrong. Note that the graphs in Fig. 2(b) and

Fig. 2(c) have the same Markov random field representation

and information matrix sparsity pattern. The difference be-

tween the binary and trinary factorization is only made explicit

in the factor graph representation. It is also interesting to note

that even if we were to approximate the dense connectivity

with a spanning tree constructed from binary factors, as in

[18], the resulting estimate would still be inconsistent as any

pair of factors are correlated.

These two observations: (i) that composed measurements

are often correlated, and (ii) that representing the potential of

an elimination clique with n nodes requires n-nary factors,

will prove important in the remainder of the paper.

III. PROPOSED METHOD

The proposed method, illustrated in Fig. 3, is summarized as

follows: First, the factors that are supported by the node to be

removed and the nodes in its elimination clique (Fig. 3(a)) are

used to compute the linear potential induced by marginaliza-

tion over the elimination clique. This potential is characterized

by its distribution’s information matrix, which we refer to as

the target information, Λt (Fig. 3(b)). Next we use either (i) Λt

directly to compute an exact n-nary potential that produces

a marginalization-equivalent potential over the elimination

clique (in the case of dense node removal), or (ii) approximate

Λt as a sparse set of binary potentials that best approximate the

true distribution over the elimination clique using a Chow-Liu

tree (in the case of sparsified node removal, Fig. 3(c)). Before

creating new GLC factors one can optionally reparameterize

the variables in each potential so that the constraint will be

linearized in a relative frame as opposed to a global frame

(Fig. 3(d)). Finally, a new GLC factor is created for each

potential and we can simply remove the marginalization node

from the graph and replace its surrounding factors with the

newly computed set (Fig. 3(e)).

In the following sections we derive the proposed method

and describe each step in detail. This description makes

use of many standard concepts from prior work in SLAM

including: graphical interpretations of SLAM, the underlying

least-squares problem, node removal / marginalization, graph

sparsification, the manipulation of information-form multivari-

ate Gaussian distributions, and the representation of robot

poses. We recommend [5, 7, 12, 21] as background material

to readers who may be less familiar with these concepts.

A. Building the Target Information

The first step in the algorithm is to correctly identify the tar-

get information, Λt (Fig. 3(b)). Letting Xm ⊂ X be the subset

of nodes including the node to be removed and the nodes in

its Markov blanket, and letting Zm ⊂ Z be the subset of

measurement factors that only depend on the nodes in Xm, we

consider the distribution p(Xm|Zm) ∼ N−1
(

ηm,Λm

)

. From

Λm we can then compute the desired target information, Λt,

by marginalizing out the elimination node using the standard

Schur-complement form. For example, in the graph shown

in Fig. 3(a), to eliminate node x1 we would first calculate

Λm using the standard information-form measurement update

equations [12, 15] as

Λm = H⊤
0 Λ0H0 +H⊤

01Λ01H01 +H⊤
12Λ12H12

+H⊤
23Λ23H23 +H⊤

13Λ13H13,

where Hij are the Jacobians of the observation models for

measurements zij with information matrices Λij , and then

compute the target information as

Λt = Λαα − ΛαβΛ
−1
ββΛ

⊤
αβ ,

5

where Λαα, Λαβ and Λββ are the required sub-blocks of Λm

with α = [x0,x2,x3] and β = [x1]. Note that, though this

example only contains unary and binary factors, general n-

nary factors are equally acceptable.

While computing Λm one could exclude intra-clique factors

that are not connected to the marginalization node, for example

z0 and z23 in Fig. 3(a), and simply leave them in the graph.

In fact the only strict requirement is that all factors which

include the marginalization node be included in Λm. However,

in §III-D we wish to sparsely approximate the marginalization

clique factors, and including all intra-clique factors assures that

the resulting connectivity will be sparse. For consistency we

include all intra-clique factors in Λm throughout the algorithm

and in all experimental results.

The key observation when identifying the target information

is that, for a given linearization point, a single n-nary factor

can recreate the potential induced by the original pairwise

factors by adding the same information (i.e., Λm) back to

the graph. Moreover, because marginalization only affects the

information matrix blocks corresponding to nodes within the

elimination clique, an n-nary factor that adds the information

contained in Λt to the graph will induce the same potential in

the graph as true node marginalization at the given lineariza-

tion point.

Note that the target information, Λt, is not the conditional

distribution of the elimination clique given the rest of the

nodes, i.e., p(x0,x2,x3|x4,Z), nor is it the marginal distri-

bution of the elimination clique, i.e., p(x0,x2,x3|Z). Using

either of these distributions as the target information results in

a wrong estimate as information will be double counted when

the n-nary factor is reinserted into the graph.

It is also important to note that the constraints in Zm may

be purely relative and/or low-rank (e.g., bearing or range-only)

and, therefore, may not fully constrain p(Xm|Zm). This can

cause Λt to be singular. Additionally, some of Λt’s block-

diagonal elements may also be singular. This will require

special consideration in subsequent sections.

B. Generic Linear Constraints

Having defined a method for calculating the target informa-

tion, Λt, we now seek to produce an n-nary factor that captures

the same potential. We refer to this new n-nary factor as a

generic linear constraint (GLC). Letting xt denote a stacked

vector of the variables within the elimination clique after node

removal, we begin by considering an observation model that

directly observes xt with a measurement uncertainty that is

defined by the target information:

zt = xt +w where w ∼ N−1
(

0,Λt

)

. (3)

Setting the measurement value, zt, equal to the current lin-

earization point, x̂t, induces the desired potential in the graph.

Unfortunately, the target information, Λt, may not be full rank,

which is problematic for optimization methods that rely upon

a square root factorization of the measurement information

matrix [5, 9]. We can, however, use principle component

analysis to transform the measurement to a lower-dimensional

representation that is full rank.

We know that Λt will be a real, symmetric, positive semi-

definite matrix due to the nature of its construction. In general

then, it has an eigen-decomposition given by

Λt =
[

u1 · · · uq

]







λ1 0 0

0
. . . 0

0 0 λq













u
⊤
1
...

u
⊤
q






= UDU⊤,

(4)

where U is a p × q matrix, D is a q × q matrix, p is the

dimension of Λt, and q = rank(Λt). Letting G = D
1

2U⊤

allows us to write a transformed observation model,

zglc = Gzt = Gx̂t +w
′ where w

′ ∼ N−1
(

0,Λ′
)

. (5)

Using the pseudo-inverse [29], Λ+
t = UD−1U⊤, and noting

that U⊤U = Iq×q, we find that

Λ′ = (GΛ+
t G

⊤)−1 = (D
1

2U⊤(UD−1U⊤)UD
1

2)−1 = Iq×q.

This GLC factor will contribute the desired target information

back to the graph, i.e.,

G⊤Λ′G = G⊤Iq×qG = Λt,

but is itself non-singular. This is a key advantage of the

proposed GLC method; it automatically determines the appro-

priate measurement rank such that Λ′ is q × q and invertible,

and G is a q × p new observation model that maps the p-

dimensional state to the q-dimensional measurement.

C. Avoiding World-Frame Linearization in GLC

In the case where the nodes involved are robot poses or

landmark locations, GLC, as proposed so far, would linearize

the potential with respect to the state variables in the world-

frame. This may be acceptable in applications where a good

world-frame linearization point is known prior to marginaliza-

tion; however, in general, a more tenable assumption is that

a good linearization point exists for the local relative-frame

transforms between nodes within the elimination clique.

To adapt GLC so that it only locally linearizes the relative

transformations between variables in the elimination clique,

we first define a “root-shift” function that maps its world-frame

coordinates, xt, to relative-frame coordinates, xr. Letting x
i
j

denote the jth pose in the ith frame, the root-shift function

for xt becomes

xr =











x
1
w

x
1
2
...

x
1
n











= r (xt) = r





















x
w
1

x
w
2
...

x
w
n





















=











⊖x
w
1

⊖x
w
1 ⊕ x

w
2

...

⊖x
w
1 ⊕ x

w
n











. (6)

In this function the first node is arbitrarily chosen as the root

of all relative transforms. The inclusion of the inverse of the

root pose, x1
w, is important as it ensures that the Jacobian of

the root-shift operation, R, is invertible, and allows for the

representation of target information that is not purely relative.

To derive, instead of starting with a direct observation of the

state variables, as in (3), we instead start with their root-shifted

relative transforms,

zr = xr +wr where wr ∼ N−1
(

0,Λr

)

. (7)

6

0 50 100 150

0

50

100

150

Before Link

0 20 40 60

0

10

20

30

40

50

60 After Link

(a) Truth

0 50 100 150

0

50

100

150

KLD = 0.0000

0 20 40 60 80

0

20

40

60

80 KLD = 17762.4194

(b) World-frame GLCs

0 50 100 150

0

50

100

150

KLD = 0.0000

0 20 40 60

0

10

20

30

40

50

60 KLD = 0.0010

(c) Root-shifted GLCs

Fig. 4: Demonstration of root-shifted versus world-frame GLC fac-
tors. Depicted is a simple graph (a) that is initially constructed
with two well-connected clusters connected by a highly-uncertain
and inaccurate link. The center (magenta) node in each cluster is
removed inducing a GLC factor over each cluster. Subsequently, a
second measurement is added between the two clusters, correcting
the location of the upper-right cluster, and drastically changing its
world-frame linearization point. After adding the strong inter-cluster
constraint, the graph with the world-frame linearized GLCs fails
to converge to the correct optima (b), while the graph with root-
shifted GLCs does (c). The Kullback-Leibler divergence from the
true marginalization is displayed for each test.

Here, the root-shifted target information, Λr, is calculated

using the fact that the root-shift Jacobian, R, is invertible,

Λr = R−⊤ΛtR
−1. (8)

Like the original target information, the root-shifted target

information, Λr, may also be low-rank. Following the same

principal component analysis procedure as before, we perform

the low-rank eigen-decomposition Λr = UrDrU
⊤
r , which

yields a new observation model,

zglcr = Grr(x̂t) +w
′
r where w

′
r ∼ N−1

(

0,Λ′
r

)

, (9)

where Gr = D
1

2

r U⊤
r , and measurement information Λ′

r =
Iq×q . Using the root-shifted linearization point to compute the

measurement value, zglcr = Grr(x̂t), will again induce the

desired potential in the graph. Now, however, the advantage is

that the GLC factor embeds the linearized constraint within a

relative coordinate frame defined by the clique, as opposed to

an absolute coordinate world-frame. Fig. 4 demonstrates this

benefit.

It is important to note that this reparameterization step is

optional and that it is the only step in GLC that is dependent

on the parameterization of the state vector. It is also important

to note that reparameterization may not even be necessary if

the parameters are already defined in a relative frame as op-

posed to in the global frame. The root-shift reparameterization

defined above is designed for graphs with nodes representing

robot poses or landmark locations in the world frame, and is

only one example of a possible transformation.

In cases where graph nodes represent other parameters

beyond world-frame robot poses or point landmarks, it may be

beneficial to reparameterize the variables that support the GLC

X1

X1

x1

x2 x4
x2 x4

x1

x3

x3

Fig. 5: Illustration of the Chow-Liu tree approximation. The mag-
nitude of mutual information between variables is indicated by
line thickness. The original distribution p(x1, x2, x3, x4) (left), is
approximated as p(x1)p(x3|x1)p(x2|x3)p(x4|x3) (right).

factor using a different transformation. Any invertible reparam-

eterization of the support variables is acceptable, allowing for

large flexibility in designing reparameterizations appropriate

for the user’s application. In our public implementation [30]

we provide a simple callback for user defined reparameteri-

zations. This is exploited in [31], where a reparameterization

is defined for use in a more complicated graph with nodes

describing a piecewise-planer model of the environment in

addition to robot pose nodes.

D. Sparse Approximate Node Removal

Exact node marginalization causes dense fill-in. As the

number of marginalized nodes increases, this dense fill-in can

quickly reduce the graph’s sparsity and greatly increase the

computational complexity of optimizing the graph [5, 9]. In

[18], Kretzschmar and Stachniss insightfully propose the use

of a Chow-Liu tree (CLT) [32] to approximate the individual

elimination cliques as sparse tree structures.

The CLT approximates a joint distribution as the product of

pairwise conditional distributions,

p(x1, · · · ,xn) ≈ p(x1)

n
∏

i=2

p(xi|xp(i)), (10)

where x1 is the root variable of the CLT and xp(i) is the parent

of xi. The pairwise conditional distributions are selected such

that the KLD between the original distribution and the CLT

approximation is minimized. To construct it, the maximum

spanning tree over all possible pairwise mutual information

pairings is found (Fig. 5), where the mutual information

between two Gaussian random vectors,

p(xi,xj) ∼ N
([

µi
µj

]

,
[Σii Σij

Σji Σjj

])

≡ N−1
([

ηi
ηj

]

,
[Λii Λij

Λji Λjj

])

,

(11)

is given by [33]

I(xi,xj) =
1

2
log

(

|Λii|

|Λii − ΛijΛ
−1
jj Λji|

)

. (12)

Like [18], we leverage the CLT approximation to sparsify

our n-nary GLC factors; however, our implementation of CLT-

based sparsification actually implements the true CLT of the

marginalization potential over the elimination clique. In [18],

the maximum mutual information spanning tree is computed

over the conditional distribution of the elimination clique given

the remainder of the graph. This tree is then used as a heuristic

to guide which edges should be composed and which edges

should be excluded. There are two issues with this—first,

these composed edges do not actually implement the true CLT.

Second, the conditional distribution of the elimination clique

7

is not the distribution that we wish to reproduce by our new

factors (see §III-A).

We address these issues by computing the CLT distribution

(10) from the target information, Λt, which parameterizes the

distribution that we wish to approximate, and then represent

the CLT’s unary and binary potentials as GLC factors.

1) Chow-Liu Tree Factors: The CLT has two types of

potentials, a unary potential on the root node and binary

potentials between the rest of the nodes in the tree. We first

consider the CLT’s binary potentials, p(xi|xp(i)), and in the

following use xj = xp(i) as shorthand for the parent node of

xi. We note that the target-information-derived joint marginal,

pt(xi,xj), can be computed from Λt and written as in (11).1

From this joint marginal, we can then easily write the desired

conditional, pt(xi|xj) = N
(

µi|j ,Σi|j

)

≡ N−1
(

ηi|j ,Λi|j

)

,

and express it as a constraint as

e = xi − µi|j = xi − Λ−1
ii (ηi − Λijxj), (13)

where e ∼ N−1
(

0,Λi|j

)

, and with Jacobian,

E =
[

∂e
∂xi

∂e
∂xj

]

=
[

I Λ−1
ii Λij

]

. (14)

Therefore, using the standard information-form measurement

update, we see that this constraint adds information

E⊤Λi|jE, (15)

where Λi|j is simply the sub-block Λii.

Treating (15) as the input target information, we can pro-

duce an equivalent GLC factor for this binary potential using

the techniques described in §III-B and §III-C. Similarly, the

CLT’s root unary potential, pt(x1), can also be implemented as

a GLC factor by using the target-information-derived marginal

information, Λ11, and the same techniques.

E. Implementation considerations

1) Pseudo-Inverse: As discussed in §III-A, the target in-

formation, Λt, is generally low rank. This is problematic for

the joint marginal (11) and conditioning (13)–(14) calculations

used to compute the CLT, as matrix inversions are required.

To address this issue, in place of the inverse we use the

generalized- or pseudo-inverse [29, §10.5], which can be cal-

culated via an eigen-decomposition for real, symmetric, posi-

tive semi-definite matrices. For full-rank matrices the pseudo-

inverse produces the same result as the true inverse, while

for low rank matrices it remains well defined. Calculating

the pseudo-inverse numerically requires defining a tolerance

below which eigenvalues are considered to be zero. We found

that our results are fairly insensitive to this tolerance and that

automatically calculating the numerical tolerance using the

machine epsilon produced good results. In our experiments

we use ǫ × n × λmax (the product of the machine epsilon,

the size of the matrix, and the maximum eigenvalue) as the

numerical tolerance.

1In this section, when we refer to marginal and conditional distributions,
they are with respect to the target information, Λt, not with respect to the
distribution represented by the full graph.

2) Pinning: When calculating the pairwise mutual infor-

mation, the determinants of both the conditional and marginal

information matrices in (12) must be non-zero, which is again

problematic because these matrices are generally low-rank

as calculated from the target information, Λt. It has been

proposed to consider the product of the non-zero eigenvalues

as a pseudo-determinant [29, 34] when working with singular,

multivariate, Gaussian distributions. Like the pseudo-inverse,

this requires determining zero eigenvalues numerically. How-

ever, we found that this can cause the mutual information com-

putation to be numerically unstable if the matrices involved

have eigenvalues near the threshold. This numerical instability

causes the edges to be sorted incorrectly in some cases. This

results in a non-optimal structure when the maximum mutual

information spanning tree is built and, therefore, a slightly

higher KLD from the true marginalization in some graphs.

Instead, we recognize that the CLT’s construction requires

only the ability to sort pairwise links by their relative mutual

information (12), and not the actual value of their mutual in-

formation. A method that slightly modifies the input matrix so

that its determinant is non-zero, without significantly affecting

the relative ordering of the edges, would also be acceptable.

Along these lines we approximate the determinant of a singular

matrix using

|Λ| ≈ |Λ + αI|. (16)

This can be thought of as applying a low-certainty prior on the

distribution, and we therefore refer to it as “pinning”.2 Pinning

always results in a numerically stable mutual information com-

putation, the only concern is that the relative ordering of the

mutual information values remains the same. Experimentally

we found the quality of the results to be less sensitive to the

pinning α value than the numerical epsilon in the pseudo-

determinant. We, therefore, elected to use pinning with α = 1
in our experiments when evaluating the determinants in the

pairwise mutual information (12).

F. Computational Complexity

The core operations that GLC relies on, in and of them-

selves, are computationally expensive. The CLT approximation

has a complexity of O(m2 logm), where m is the number of

nodes. Matrix operations on the information matrix with n

variables, including the eigen-decomposition, matrix multipli-

cation, and inversion operations, have a complexity of O(n3).
Fortunately, the input size for these operations is limited to

the number of nodes within the elimination clique, which in a

SLAM graph is controlled by the perceptual radius. In general,

the number of nodes and variables in an elimination clique is

much less than the total number of nodes in the full graph,

which makes GLC’s calculations easily feasible. We will see

in §IV-C that the algorithm run-time is sufficiently small for

real-time removal of nodes from the graph and for large batch

removal of nodes.

8

TABLE I: Experimental Datasets

Dataset Node Types Factor Types # Nodes # Factors

Intel Lab 3-DOF pose 3-DOF odometry, 3-DOF laser scan-matching 910 4,454
Killian Court 3-DOF pose 3-DOF odometry, 3-DOF laser scan-matching 1,941 2,191
Duderstadt Center 6-DOF pose 6-DOF odometry, 6-DOF laser scan-matching 552 1,774
EECS Building 6-DOF pose 6-DOF odometry, 6-DOF laser scan-matching 611 2,134
Victoria Park 3-DOF pose, 2-DOF Landmark 3-DOF odometry, 2-DOF landmark observation 7,120 10,609
USS Saratoga 6-DOF pose 6-DOF odometry, 5-DOF monocular-vision, 1-DOF depth 1,513 5,433

(a) Intel Lab (b) Killian Court (c) Duderstadt Center

(d) EECS Building (e) Victoria Park

(f) USS Saratoga

Fig. 6: Graphs used in GLC’s evaluation. Blue links represent full-
state (3-DOF or 6-DOF) relative-pose constraints from odometry
and laser scan-matching. Red links represent 5-DOF relative-pose
constraints modulo-scale from monocular vision. Cyan links represent
landmark observation factors.

IV. EXPERIMENTAL EVALUATION OF GLC NODE

REMOVAL

First we directly evaluate GLC node removal over a variety

of SLAM graphs (summarized in Fig. 6 and Table I), includ-

ing:

• Two standard 3-DOF pose-graphs, Intel Lab and Killian

Court.

• Two 6-DOF pose-graphs built using data from a Segway

ground robot equipped with a Velodyne HDL-32E laser

scanner as the primary sensing modality, Duderstadt

Center and EECS Building.

• The Victoria Park 3-DOF graph with poses and land-

marks.

• A 6-DOF graph produced by a Hovering Autonomous

Underwater Vehicle (HAUV) performing monocular

SLAM for autonomous ship hull inspection [35], USS

Saratoga.

The proposed algorithm was implemented using iSAM [9,

36] as the underlying optimization engine. The code is open-

source and available for download within the iSAM repository

[30]. For comparison, a dense measurement composition (MC)

2This is related to the derivation of the pseudo-determinant in [34], which
uses a similar form in the limit as α → 0.

method as described in §II, and a sparse MC method based

upon CLT-guided node removal, as proposed in [18], were

also implemented.

For each graph, the original full graph is first optimized

using iSAM. Then the different node removal algorithms are

each performed to remove a varying percentage of nodes

evenly spaced throughout the trajectory. Finally, the graphs

are again optimized in iSAM.

For each experiment the true marginal distribution is re-

covered by obtaining the linearized information matrix from

the full graph about the optimization point and performing

Schur-complement marginalization. This provides a ground-

truth distribution that we can directly compare the distribution

after node removal against.

A summary of our results are provided in Table II, which

shows the KL-divergence (normalized by the DOF of the

distribution after node removal) from the true marginalization

as an increasing percentage of nodes are removed from the

graph. Results for dense-exact and sparse-approximate GLC

are provided for all six graphs, while results for dense and

sparse-approximate MC are provided only for the pose-graphs

with full-state constraints. The Saratoga graph is excluded as it

contains 5-DOF monocular relative-pose constraints for which

MC is ill-defined.

A. Dense GLC Node Removal

We first consider the results for our method when perform-

ing exact node removal with dense fill-in. Visual examples of

the resulting dense GLC graphs are shown in Fig. 7.

To put GLC’s KLD values from Table II into perspective,

we look at the case with the highest KLD, which is the

Saratoga graph with 25% of nodes removed (i.e., KLD =
0.016). Under these conditions the reconstructed graph has

a mean error in translation and rotation of 18.9 mm and

3.8 mrad, respectively, when compared to the original baseline

pose-graph SLAM result. To more systematically investigate

the accuracy of GLC’s marginal pose uncertainties in Fig. 8

we consider the eigenvalues of the difference between the

marginal covariances of the GLC-derived and the true distri-

bution, eig(ΣGLC
ii − ΣTRUE

ii). In the ideal case the eigenvalues

of this difference will be zero, indicating perfect agreement

between GLC and the true marginalization. Values larger

than zero indicate conservative estimates while those less

than zero indicate over-confidence. Conservative estimates are

generally preferred to overconfident estimates in robotics,

as overconfidence can lead to data association failure [37]

and unsafe path planning and obstacle avoidance. For dense

GLC we see that the eigenvalues are almost zero (note the

10−6 scale), indicating excellent agreement between GLC and

the true marginalization. Additionally, visual examples of the

9

TABLE II: Experimental Normalized KLD From True Marginalization

Dense GLC CLT Sparse GLC

% Nodes Removed 25.0 % 33.3 % 25.0 % 33.3 % 50.0 % 66.6 % 75.0 % 83.3 % 87.5 %

Intel Lab 0.002 0.002 0.096 0.110 0.128 0.126 0.131 0.170 0.139
Killian Court 0.001 0.002 0.006 0.008 0.013 0.020 0.023 0.028 0.033

Duderstadt Center 0.001 0.000 0.003 0.003 0.003 0.005 0.008 0.018 0.024
EECS Building 0.003 0.002 0.005 0.005 0.004 0.010 0.017 0.035 0.049

Victoria Park 0.001 0.002 0.005 0.007 0.011 0.017 0.024 0.042 0.057
USS Saratoga 0.016 0.013 0.017 0.015 0.001 0.002 0.001 0.001 0.003

Dense Pairwise MC Sparse Pairwise MC

% Nodes Removed 25.0 % 33.3 % 25.0 % 33.3 % 50.0 % 66.6 % 75.0 % 83.3 % 87.5 %

Intel Lab 1.57E3 7.19E5 0.023 0.038 0.108 0.280 0.428 0.800 1.295
Killian Court 0.01 0.02 0.005 0.007 0.013 0.023 0.031 0.042 0.048

Duderstadt Center 0.18 42.69 0.002 0.008 0.008 0.025 0.044 0.070 0.100
EECS Building 160.76 9.32E4 0.003 0.005 0.010 0.027 0.043 0.113 0.170

(a) Intel (33.3%) (b) Killian (33.3%) (c) Duderstadt (25.0%)

(d) EECS (25.0%) (e) Victoria (33.0%)

(f) USS Saratoga (25.0%)

Fig. 7: Example graphs after dense GLC node removal. New GLC
factors are shown in magenta. Note that this is the MRF repre-
sentation of the graph connectivity. The percentage indicates the
percentage of nodes that have been removed.

200 400 600 800 1000
−5

0

5

10

15
x 10

−6

Pose Number

E
ig

e
n

v
a

lu
e

 E
n

v
e

lo
p

e

Dense GLC

Sparse GLC

Fig. 8: Accuracy of GLC-derived marginals for the USS Saratoga
dataset with 25% of nodes removed. The range of the eigenvalues of
the difference between the covariances of the GLC-derived marginals
and true marginals, eig(ΣGLC

ii −ΣTRUE
ii), is shown for both dense and

sparse GLC. Note 10−6 scale.

−40 −30 −20 −10 0 10 20 30
−30

−20

−10

0

10

x [m]

y
 [

m
]

(a) EECS Dense GLC

−40 −30 −20 −10 0 10 20 30
−30

−20

−10

0

10

x [m]

y
 [

m
]

(b) EECS Dense MC

−45 −40 −35 −30
−5

0

5

x [m]

y
 [
m

]

(c) EECS Dense GLC (zoom)

−45 −40 −35 −30
−5

0

5

x [m]

y
 [
m

]

(d) EECS Dense MC (zoom)

−25 −20 −15 −10 −5 0 5 10
−10

−5

0

5

10

15

20

25

x [m]

y
 [

m
]

(e) Intel Dense GLC

−25 −20 −15 −10 −5 0 5 10
−10

−5

0

5

10

15

20

25

x [m]

y
 [

m
]

(f) Intel Dense MC

Fig. 9: Sample 3-σ uncertainty ellipses for the EECS graph and the
Intel graph with 33.3% node removal using dense GLC and dense
MC. The true marginalization uncertainties are shown in cyan. Note
that fewer red ellipses are plotted than cyan because fewer nodes
remain in the graph after node removal.

marginal covariances for the EECS and Intel graphs are shown

in Fig. 9(a) and Fig. 9(e), respectively.

As more nodes are removed from the graph, dense GLC

node removal quickly becomes computationally expensive due

to an increase in the size of the elimination cliques. Removing

nodes may take on the order of tens of seconds [1] per

node. This, combined with increased optimization cost due to

the dense connectivity, limits the applicability of dense node

removal to applications where only a small percentage (in

10

30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

Pct. Nodes Removed

N
o
rm

a
liz

e
d
 K

L
D

Intel (GLC)

Killian (GLC)

Victoria (GLC)

Duderstadt (GLC)

EECS (GLC)

Saratoga (GLC)

Intel (MC)

Killian (MC)

Duderstadt (MC)

EECS (MC)

(a) Normalized KLD for Sparse-Approximate Methods

30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

Pct. Nodes Removed

R
a

ti
o

 o
f

N
o

rm
a

liz
e

d
 K

L
D

 (
M

C
/G

L
C

)

Intel (MC/GLC)

Killian (MC/GLC)

Duderstadt (MC/GLC)

EECS (MC/GLC)

(b) Ratio of Normalized KLD (MC / GLC)

Fig. 10: KLD (normalized by the DOF of the distribution after
node removal) for the GLC and MC-based sparse approximate node
removal methods are shown in (a). In (b) the ratio of KLD between
MC and GLC is plotted, highlighting that, in most cases, as more
nodes are removed MC induces several times higher KLD than GLC.

our experiments around one-third to one-half) of nodes are

removed.

Considering the results for dense MC, Table II shows that

it performs quite poorly—as more nodes are removed, the

KLD quickly increases. This is because dense pairwise MC

fails to properly track the correlation that develops between

composed measurements (as demonstrated in §II); thus, the

higher the connectivity in the graph, the more measurement

information gets double counted when compounding. This

results in overconfidence as well as a shift in the optimal mean

(Fig. 9(b) and Fig. 9(f)).

B. CLT Sparse-Approximate GLC Node Removal

Next we consider the results for sparse-approximate GLC

node removal. Table II shows that in many graphs, including

Killian, Duderstadt, EECS, and USS Saratoga, the KLD for

sparse-approximate GLC is only slightly worse than that of

dense-exact GLC—indicating that very little graph information

is lost due to the CLT approximation. Fig. 10 illustrates the

KLD for the sparse-approximate versions of GLC and MC,

again normalizing the KLD by the number of degree of

freedom in the graph after node removal. Visual examples for

sparsification on the graphs are shown in Fig. 11. Examples

of the marginal covariances for the EECS and Intel graphs are

show in Fig. 12.

Considering the results for sparse MC, Table II shows that,

unlike dense MC, sparse MC performs reasonably well when

removing a smaller percentage of nodes. This is because

information double counting during measurement composition

(a) Intel (66.3%) (b) Killian (83.3%) (c) Duderstadt (66.6%)

(d) EECS (50.0%) (e) Victoria (75.0%)

(f) USS Saratoga (87.5%)

Fig. 11: Example graphs after CLT sparse GLC node removal. New
GLC factors are shown in magenta. The percentage indicates the
percentage of nodes that have been removed.

accumulates to a lesser extent than in the dense case because

of sparsification. However, as the percentage of removed nodes

increases, we see that sparse MC produces less accurate and

more inconsistent results than sparse GLC. This is illustrated

in Fig. 10(b), which highlights the ratio in the normalized

KLD between MC and GLC, and in Fig. 12 and Fig. 13, which

compare the marginal covariances of the distributions.

It is important to note that the proposed method is not

guaranteed to be conservative. This is due to the fact that

the CLT approximation simply seeks to produce the minimum

KLD and does not guarantee a conservative approximation. To

address this we have recently proposed an extension to GLC

[38] that provides a guaranteed-conservative approximation,

while still producing a low KLD.

In the case of the Intel graph, MC achieves a significantly

better KLD than GLC when removing a small percentage of

nodes. This is due to the fact that when removing a small

number of nodes, GLC is slightly conservative (Fig. 12(e)),

while MC’s inconsistency coincidentally yields a less conser-

vative estimate with a better KLD (Fig. 12(f)). As more nodes

are removed this trend is continued, with GLC remaining

conservative and producing a better KLD (Fig. 12(g)), while

MC becomes very inconsistent (Fig. 12(h)).

Unlike dense node removal, sparse GLC maintains graph

sparsity and keeps elimination clique size small. This results

in fast node removal on the order of tens of milliseconds per

node [1, 2].

C. Evaluating GLC for Long-Term SLAM

Having seen that GLC node removal provides an accurate

way to remove nodes from a factor graph, we now wish

to evaluate its effectiveness when integrated within a SLAM

system. To do so we consider a multi-session scenario where

11

−40 −30 −20 −10 0 10 20 30
−30

−20

−10

0

10

x [m]

y
 [

m
]

(a) EECS Sparse GLC (75.0%)

−45 −40 −35 −30
−5

0

5

x [m]

y
 [
m

]

(b) EECS Sparse GLC (75.0%, zoom)

−40 −30 −20 −10 0 10 20 30
−30

−20

−10

0

10

x [m]

y
 [

m
]

(c) EECS Sparse MC (75.0%)

−45 −40 −35 −30
−5

0

5

x [m]

y
 [
m

]

(d) EECS Sparse MC (75.0%, zoom)

−25 −20 −15 −10 −5 0 5 10
−10

−5

0

5

10

15

20

25

x [m]

y
 [

m
]

(e) Intel Sparse GLC (33.3%)

−25 −20 −15 −10 −5 0 5 10
−10

−5

0

5

10

15

20

25

x [m]

y
 [

m
]

(f) Intel Sparse MC (33.3%)

−25 −20 −15 −10 −5 0 5 10
−10

−5

0

5

10

15

20

25

x [m]

y
 [

m
]

(g) Intel Sparse GLC (87.5%)

−25 −20 −15 −10 −5 0 5 10
−10

−5

0

5

10

15

20

25

x [m]

y
 [

m
]

(h) Intel Sparse MC (87.5%)

Fig. 12: Sample 3-σ uncertainty ellipses for the EECS graph with 75% node removal and for the Intel graph with 33.3% and 87.5% node
removal using sparse GLC and MC. The true marginalization uncertainties are shown in cyan. Note that fewer red ellipses are plotted than
cyan because fewer nodes remain in the graph after node removal. The percentage indicates the percentage of nodes that have been removed.

20 40 60 80 100 120
−6

−4

−2

0

2

4

Pose Number

E
ig

e
n

v
a

lu
e

 E
n

v
e

lo
p

e

Sparse GLC

Sparse MC

(a) Duderstadt (75.0% Removed)

20 40 60 80 100 120 140
−0.15

−0.1

−0.05

0

0.05

Pose Number

E
ig

e
n
v
a
lu

e
 E

n
v
e
lo

p
e

Sparse GLC

Sparse MC

(b) EECS (75.0% Removed)

20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

Pose Number

E
ig

e
n
v
a
lu

e
 E

n
v
e
lo

p
e

Sparse GLC

Sparse MC

(c) Intel (87.5% Removed)

Fig. 13: Comparison of marginal distributions between sparse GLC and sparse MC, for the Duderstadt, EECS, and Intel graphs. The range of
eigenvalues of the difference between the covariances of the approximate-node-removal marginals and true marginals, eig(ΣEST

ii −ΣTRUE
ii), is

shown for both sparse GLC and sparse MC. In the ideal case the range will be zero, indicating perfect agreement between the approximate
and the true marginals. Values larger than zero indicate conservative estimates while those less than zero indicate over-confidence. The results
show that sparse GLC remains conservative while sparse MC is overconfident for the Duderstadt and Intel graphs. In the case of the EECS
graph both methods produce estimates that are occasionally overconfident.

the robot repeatedly performs SLAM in discrete sessions.

Under these conditions node removal can be performed be-

tween sessions as a batch operation. In an attempt to produce

a graph that has a complexity dictated primarily by spatial

extent and not by mapping duration, we remove spatially-

redundant nodes based on a simple criteria that attempts to

keep nodes with high node degree and nodes that have been

recently added to the graph. This node removal scheme, and

others including online methods that remove nodes as the

robot explores, were originally proposed and evaluated in [2].

For long-term SLAM applications we focus on the CLT-based

sparse-approximate version of GLC node removal as it is most

appropriate in situations where many more nodes are removed

than kept. Using the dense-exact version of GLC node removal

in these circumstances would produce graphs with a very high

node degree, and therefore, a high computationally complexity

because of the loss of sparsity.

We performed experiments using data collected over the

course of 15 months using a Segway robotic platform (Fig. 1).

Data was collected over 27 trials (approximately bi-weekly)

between January 8th, 2012 and April 5th, 2013 by manually

driving the robot through the University of Michigan’s North

Campus. Data was collected both indoors and outdoors, at

varying times of the day and in the presence of dynamic

elements including people and cars. Additionally, the dataset

contains several large construction projects. Each trial through

the environment is on average 1.29 h in duration and 5.5 km
in length totaling 34.9 h of data covering 147.4 km (Fig. 1).

Graph constraints are derived from odometry, 3D LIDAR scan

matching [39] and, when available, consumer-grade global

positioning system (GPS). A ground-truth graph was created

from all trajectories without node removal and with the addi-

tion of constraints from a highly accurate real-time kinematic

(RTK) GPS system.

The reduced graph at the end of the last full run is compared

with a full graph from which no nodes have been removed in

12

5 10 15 20 25
0

1

2

3

Session

M
e
a
n
 T

ra
n
s
la

ti
o
n
 E

rr
o
r

(m
)

Full Graph

GLC Reduced

(a) Translation Error

5 10 15 20 25
0

1

2

3

4

Session

M
e
a
n
 A

tt
it
u
d
e
 E

rr
o
r

(d
e
g
)

Full Graph

GLC Reduced

(b) Attitude Error

Fig. 14: Mean error for translation (
√

δ2x + δ2y + δ2z) and attitude

(
√

δ2r + δ2p + δ2h) with respect to RTK-based ground-truth at the end
of each mapping session for the full graph from which no nodes
were removed, and the GLC reduced graph. 5% and 95% percentile
bounds are denoted with dashed lines.

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Session

A
v
g

.
In

c
re

m
e

n
ta

l
S

te
p

 T
im

e
 (

s
)

Full Graph

GLC Reduced

(a) Incremental Updates

5 10 15 20 25
0

10

20

30

40

Session

A
v
g

.
B

a
tc

h
 S

te
p

 T
im

e
 (

s
)

Full Graph

GLC Reduced

(b) Batch Updates

Fig. 15: Mean CPU time for incremental and batch iSAM optimiza-
tion update steps, and for GLC node removal, in seconds.

Fig. 1. In the bottom row, by scaling the z-axis according to

time, we can clearly see the effects of node removal. We see

that the most recent session is well connected to the previous

session with some sparse connectivity to older nodes in the

graph.

1) Reduced Graph Error and Computational Complexity:

First, we consider the translation and attitude error of the

reduced graph from the ground-truth. We include the full graph

that was built without node removal as a baseline. We see the

GLC reduced graph produces estimates with error similar to

the full graph (Fig. 14). Though the graph produced with GLC

node removal has a similar error to the full graph, it is vastly

less computationally complex. We see in Fig. 16 that GLC

node removal limits the number of nodes and factors to be

essentially constant as only small additions to the spatial extent

of the map are made after the first session, never exceeding

4,000 nodes or 15,000 factors. In comparison, the full graph

grows linearly ending with over 46,000 nodes and 200,000

factors. We also see that the sparsity of the measurement

Cholesky Factor, R, is higher than that of the full graph, but

still quite sparse, with fill-in less than 0.4%.

As new nodes and factors are added to the graph, iSAM per-

forms two different types of updates; an incremental update,

where the solution is updated without relinearization, and a

batch update, where the solution is relinearized and solved.

In our experiments the batch optimization update was called

every 50 incremental updates. In Fig. 15, we see that in the

full graph, the computation time for incremental and batch

update steps grows super-linearly, while for the GLC reduced

graph they remain roughly constant. The time to remove a

node using GLC is also relatively constant and on the order

of 10 ms [2].

The total processing time for the 34.9 h of logged data,

including graph optimization, node removal, data association

and scan matching, took 58.7 h for the full graph. When

using the proposed complexity management scheme the total

processing times was reduced to 6.3 h, which is 5.5 times

faster than real-time.

2) Distribution Comparison: In the previous experiment,

because nodes are removed from the graph between each

session the robot will make different data association deci-

sions from those in the full graph, resulting in fundamentally

different distributions. In order to isolate the effects of GLC,

we wish to directly compare the distribution produced by

repeatedly applying sparse-approximate GLC node removal to

a full distribution derived using the exact same measurements,

from which no nodes have been removed. This can be done

by accumulating the measurements from each session in the

GLC-reduced graph into one large graph. As in §IV-B, we

also compare results with the sparse measurement composing

method based upon CLT-guided node removal, as proposed in

[18]. The results of this comparison are shown in Fig. 17. Here

we see that repeatedly applying sparse approximate GLC node

removal will produce a difference in the estimates from the

full graph, though the difference remains low, both in terms

of mean (Fig. 17(a) and (b)) and KLD (Fig. 17(c)).

By looking at the eigenvalues of the difference between

the marginal covariances in the reduced and full graph, we

can see that the GLC reduced graph produces a more accu-

rate distribution (eigenvalue range closer to zero) than MC

(Fig. 17(d)). In this case the range of eigenvalues for GLC is

positive indicating a conservative estimate.

V. DISCUSSION AND FUTURE WORK

When considering the application of the proposed method,

there are a few things to consider, some of which we hope to

address in future work:

• When performing GLC, a good linearization point for

the relative transforms within the elimination clique must

exist. This affects when it is appropriate to remove nodes,

especially if performing online node removal. The graph

should be optimized as well as possible before node

removal. Often it is desirable to remove well established

or “mature” nodes from the graph, instead of nodes that

have been recently instantiated and are highly uncertain.

Note, however, that this is not a function of node age but

rather whether the graph is sufficiently constrained and

optimized to provides a good linearization point.

• Because the target information is often low rank, we

use “pinning” to compute the mutual information when

building the CLT and therefore, cannot guarantee that

this yields a minimum KLD from the true distribution

(though our experimental results show that we achieve

a significantly lower KLD than other state-of-the-art

methods).

• The CLT approximation itself is not guaranteed to

be conservative and therefore sparse-approximate GLC

node removal does not guarantee a conservative esti-

mate. In fact, our results showed that CLT-based GLC

sparse approximation can be either slightly conservative

(Fig. 8 and Fig. 13(a) and (c)), or slightly over-confident

13

5 10 15 20 25
0

1

2

3

4

5
x 10

4

Session

N
u
m

b
e
r

o
f
N

o
d
e
s

Full Graph

GLC Reduced

(a) Number of Nodes

5 10 15 20 25
0

0.5

1

1.5

2

2.5
x 10

5

Session

N
u
m

b
e
r

o
f
F

a
c
to

rs

Full Graph

GLC Reduced

(b) Number of Factors

5 10 15 20 25
0.1

0.2

0.3

0.4

0.5

Session

C
h
o
le

s
k
y
 F

a
c
to

r
%

 N
Z

Full Graph

GLC Reduced

(c) Graph Sparsity

Fig. 16: Long-term SLAM graph complexity. The full graph grows unbounded in both number of nodes and factors while the GLC-reduced
graph remains roughly constant after the first session ((a) and (b)). The GLC-reduced graph remains quite sparse throughout the experiment,
though slightly less so than the full graph (c).

5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

Session

M
e

a
n

 T
ra

n
s
la

ti
o

n
 D

if
f.

 (
m

)

GLC Reduced

MC Reduced

(a) Translation Error

5 10 15 20 25
0

1

2

3

4

Session

M
e

a
n

 A
tt

it
u

d
e

 D
if
f.

 (
d

e
g

)

GLC Reduced

MC Reduced

(b) Attitude Error

5 10 15 20 25
−100

0

100

200

300

Session

M
e
a
n
 K

L
D

GLC Reduced

MC Reduced

(c) KL Divergence

5 10 15 20 25
−0.02

0

0.02

0.04

0.06

Session

M
e
a
n
 R

a
n
g
e
 o

f
E

ig
e
n
v
a
lu

e
s GLC Reduced

MC Reduced

(d) eig(ΣGLC
ii − ΣTRUE

ii)

Fig. 17: Long-term SLAM graph distribution comparison. Here, we compare the estimated distributions using GLC node removal with
the estimated distributions using the same measurements but without node removal. Translation error (a) is defined as

√

δ2x + δ2y + δ2z and

attitude error (b) as
√

δ2r + δ2p + δ2h. The average KLD between resulting marginal covariances for each node are shown in (c). By looking at
the eigenvalues of the difference between marginal covariances (d) we can see that the GLC reduced graph produces more accurate marginal
uncertainties than MC. 5% and 95% percentile bounds are denoted with dashed lines.

(Fig. 13(b)). While our proposed GLC method avoids

inconsistency pitfalls associated with measurement com-

pounding, and accurately recreates the CLT, it may still

be slightly overconfident if the CLT approximation cannot

represent all of the true correlation within the clique. We

have found experimentally that the CLT performs well

on most graphs, and only results in noticeable overconfi-

dence in graphs with large, dense cliques. In this regard,

the methods proposed in [14], [24], and our recent work

[38], which optimize the KLD of a sparse distribution

while enforcing a consistency constraint, provide some

insight into a way forward toward this end.

• When removing a set of nodes it is important to note

that the order in which they are removed affects the re-

sulting graph connectivity. Experimentally, we found that

removing long chains of nodes sequentially sometimes

produced large star shaped trees in the graph. To avoid

this, sets of nodes were removed in a randomized order

in all experiments. The variable elimination ordering

problem [40] is well studied for dense node removal.

The application and adaptation of existing variable elim-

ination ordering strategies for node removal with sparse

connectivity could further improve the performance of

GLC-based complexity management schemes.

VI. CONCLUSIONS

We presented a factor-based method for node removal in a

wide variety of SLAM graphs. This method can be used to

alleviate some of the computational challenges in performing

inference over long-term graphs by reducing the graph size

and density. The proposed method is able to represent either

exact marginalization, or a sparse approximation of the true

marginalization, in a consistent manner over a heterogeneous

collection of constraints. We experimentally evaluated the

proposed method over multiple real-world SLAM graphs and

showed that it outperformed other state-of-the-art methods in

terms of Kullback-Leibler divergence. Additionally, the use

of the proposed method in long-term complexity management

schemes was experimentally validated.

REFERENCES

[1] N. Carlevaris-Bianco and R. M. Eustice, “Generic factor-based node
marginalization and edge sparsification for pose-graph SLAM,” in Proc.

IEEE Int. Conf. Robot. and Automation, Karlsruhe, Germany, May 2013,
pp. 5728–5735.

[2] ——, “Long-term simultaneous localization and mapping with generic
linear constraint node removal,” in Proc. IEEE/RSJ Int. Conf. Intell.

Robots and Syst., Nov. 2013, pp. 1034–1041.
[3] F. Lu and E. Milios, “Globally consistent range scan alignment for

environment mapping,” Autonomous Robots, vol. 4, pp. 333–349, 1997.
[4] S. Thrun and M. Montemerlo, “The graph SLAM algorithm with

applications to large-scale mapping of urban structures,” Int. J. Robot.

Res., vol. 25, no. 5-6, pp. 403–429, 2006.
[5] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous localization

and mapping via square root information smoothing,” Int. J. Robot. Res.,
vol. 25, no. 12, pp. 1181–1203, 2006.

[6] E. Olson, J. Leonard, and S. Teller, “Fast iterative alignment of pose
graphs with poor initial estimates,” in Proc. IEEE Int. Conf. Robot. and

Automation, Orlando, FL, USA, May 2006, pp. 2262–2269.
[7] R. M. Eustice, H. Singh, and J. J. Leonard, “Exactly sparse delayed-

state filters for view-based SLAM,” IEEE Trans. Robot., vol. 22, no. 6,
pp. 1100–1114, 2006.

[8] K. Konolige and M. Agrawal, “FrameSLAM: From bundle adjustment
to real-time visual mapping,” IEEE Trans. Robot., vol. 24, no. 5, pp.
1066–1077, 2008.

[9] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental smooth-

14

ing and mapping,” IEEE Trans. Robot., vol. 24, no. 6, pp. 1365–1378,
2008.

[10] V. Ila, J. M. Porta, and J. Andrade-Cetto, “Information-based compact
pose SLAM,” IEEE Trans. Robot., vol. 26, no. 1, pp. 78–93, 2010.

[11] H. Johannsson, M. Kaess, M. Fallon, and J. J. Leonard, “Temporally
scalable visual SLAM using a reduced pose graph,” in Proc. IEEE Int.

Conf. Robot. and Automation, Karlsruhe, Germany, May 2013, pp. 54–
61.

[12] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-
Whyte, “Simultaneous localization and mapping with sparse extended
information filters,” Int. J. Robot. Res., vol. 23, no. 7/8, pp. 693–716,
2004.

[13] M. R. Walter, R. M. Eustice, and J. J. Leonard, “Exactly sparse extended
information filters for feature-based SLAM,” Int. J. Robot. Res., vol. 26,
no. 4, pp. 335–359, 2007.

[14] J. Vial, H. Durrant-Whyte, and T. Bailey, “Conservative sparsification
for efficient and consistent approximate estimation,” in Proc. IEEE/RSJ

Int. Conf. Intell. Robots and Syst., San Francisco, CA, USA, Sep. 2011,
pp. 886–893.

[15] R. Eustice, M. Walter, and J. Leonard, “Sparse extended information
filters: insights into sparsification,” in Proc. IEEE/RSJ Int. Conf. Intell.

Robots and Syst., Edmonton, Alberta, Canada, Aug. 2005, pp. 3281–
3288.

[16] K. Konolige and J. Bowman, “Towards lifelong visual maps,” in Proc.

IEEE/RSJ Int. Conf. Intell. Robots and Syst., St. Louis, MO, USA, Oct.
2009, pp. 1156–1163.

[17] E. Eade, P. Fong, and M. E. Munich, “Monocular graph SLAM with
complexity reduction,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots and

Syst., Taipei, Taiwan, Oct. 2010, pp. 3017–3024.
[18] H. Kretzschmar and C. Stachniss, “Information-theoretic compression

of pose graphs for laser-based SLAM,” Int. J. Robot. Res., vol. 31, pp.
1219–1230, 2012.

[19] A. Walcott-Bryant, M. Kaess, H. Johannsson, and J. J. Leonard,
“Dynamic pose graph SLAM: Long-term mapping in low dynamic
environments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst.,
Vilamoura, Portugal, Oct. 2012, pp. 1871–1878.

[20] Y. Wang, R. Xiong, Q. Li, and S. Huang, “Kullback-leibler divergence
based graph pruning in robotic feature mapping,” in Proc. European

Conf. Mobile Robotics, Barcelona, Spain, Sep. 2013, pp. 32–37.
[21] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial

relationships in robotics,” in Autonomous Robot Vehicles, I. Cox and
G. Wilfong, Eds. Springer-Verlag, 1990, pp. 167–193.

[22] J. Folkesson and H. Christensen, “Graphical SLAM—a self-correcting
map,” in Proc. IEEE Int. Conf. Robot. and Automation, New Orleans,
LA, USA, April 2004, pp. 383–390.

[23] U. Frese, “Efficient 6-DOF SLAM with treemap as a generic backend,”
in Proc. IEEE Int. Conf. Robot. and Automation, Rome, Italy, Apr. 2007,
pp. 4814—4819.

[24] G. Huang, M. Kaess, and J. J. Leonard, “Consistent sparsification
for graph optimization,” in Proc. European Conf. Mobile Robotics,
Barcelona, Spain, Sep. 2013, pp. 150–157.

[25] U. Frese, “Treemap: an O(Log N) algorithm for simultaneous localiza-
tion and mapping,” in Spatial Cognition IV, C. Freksa, Ed. Springer
Verlag, 2004.

[26] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Proc. IEEE Int.

Conf. Robot. and Automation, Shanghai, China, May 2011, pp. 3607–
3613.

[27] M. Mazuran, T. G. Diego, S. Luciano, and W. Burgard, “Nonlinear graph
sparsification for SLAM,” in Proc. Robot.: Sci. & Syst. Conf., Berkeley,
CA, USA, Jul. 2014, pp. 1–8.

[28] A. Cunningham, V. Indelman, and F. Dellaert, “DDF-SAM 2.0: Consis-
tent distributed smoothing and mapping,” in Proc. IEEE Int. Conf. Robot.

and Automation, Karlsruhe, Germany, May 2013, pp. 5200–5207.
[29] C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and its

Applications. John Wiley & Sons, 1971.
[30] M. Kaess, H. Johannsson, D. Rosen, N. Carlevaris-Bianco,

and J. Leonard, “Open source implementation of iSAM,”
http://people.csail.mit.edu/kaess/isam, 2010.

[31] P. Ozog and R. M. Eustice, “Toward long-term, automated ship hull
inspection with visual SLAM, explicit surface optimization, and generic
graph-sparsication,” in Proc. IEEE Int. Conf. Robot. and Automation,
Hong Kong, China, Jun. 2014, pp. 3832–3839.

[32] C. Chow and C. N. Liu, “Approximating discrete probability distribu-
tions with dependence trees,” IEEE Trans. on Info. Theory, vol. 14, pp.
462–467, 1968.

[33] A. Davison, “Active search for real-time vision,” in Proc. IEEE Int.

Conf. Comput. Vis., Beijing, China, Oct. 2005, pp. 66–73.
[34] T. P. Minka, “Inferring a Gaussian distribution,” MIT Media Lab, Tech.

Rep., 2001.
[35] F. S. Hover, R. M. Eustice, A. Kim, B. Englot, H. Johannsson, M. Kaess,

and J. J. Leonard, “Advanced perception, navigation and planning for
autonomous in-water ship hull inspection,” Int. J. Robot. Res., vol. 31,
no. 12, pp. 1445–1464, 2012.

[36] M. Kaess and F. Dellaert, “Covariance recovery from a square root
information matrix for data association,” Robot. and Autonomous Syst.,
vol. 57, pp. 1198–1210, 2009.

[37] J. Neira and J. Tardos, “Data association in stochastic mapping using
the joint compatibility test,” IEEE Trans. Robot. Autom., vol. 17, no. 6,
pp. 890–897, 2001.

[38] N. Carlevaris-Bianco and R. M. Eustice, “Conservative edge sparsifica-
tion for graph SLAM node removal,” in Proc. IEEE Int. Conf. Robot.

and Automation, Hong Kong, China, Jun. 2014, pp. 854–860.
[39] M. Magnusson, “The three-dimensional normal-distributions transform

– an efficient representation for registration, surface analysis, and loop
detection,” Ph.D. dissertation, Örebro University, 2009, Örebro Studies
in Technology 36.

[40] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles

and Techniques. MIT Press, 2009.

Nicholas Carlevaris-Bianco (S’10) received the
B.S. degree in Electrical Engineering from Grand
Valley State University, Allendale, MI in 2007, and
the M.S. degree in Electrical Engineering from the
University of Michigan, Ann Arbor, MI, in 2011.
Currently, he is pursuing the Ph.D. degree with the
Department of Electrical Engineering, University of
Michigan. His research interest include long-term
mapping and navigation for autonomous robots.

Michael Kaess (S’02–M’08) received the Ph.D.
(2008) and M.S. (2002) degrees in computer science
from the Georgia Institute of Technology, Atlanta,
GA. Currently, he is an Assistant Research Professor
in the Robotics Institute at Carnegie Mellon Univer-
sity. Previously he has been a research scientist and
postdoctoral associate in the MIT Computer Science
and Artificial Intelligence Laboratory (CSAIL). His
research focuses on robot perception for navigation
and autonomy.

Ryan M. Eustice (S’00–M’05–SM’10) received the
B.S. degree in Mechanical Engineering from Michi-
gan State University, East Lansing, MI in 1998, and
the Ph.D. degree in Ocean Engineering from the
Massachusetts Institute of Technology/Woods Hole
Oceanographic Institution Joint Program, Woods
Hole, MA, in 2005. Currently, he is an Associate
Professor with the Department of Naval Architecture
and Marine Engineering, University of Michigan,
Ann Arbor, with joint appointments in the De-
partment of Electrical Engineering and Computer

Science, and in the Department of Mechanical Engineering. His research
interests include autonomous navigation and mapping, computer vision and
image processing, robot perception, and marine and mobile robotics.

