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Abstract—This paper reports on a factor-based method for
node marginalization in simultaneous localization and mapping
(SLAM) pose-graphs. Node marginalization in a pose-graph in-
duces fill-in and leads to computational challenges in performing
inference. The proposed method is able to produce a new set
of constraints over the elimination clique that can represent
either the true marginalization, or a sparse approximation of
the true marginalization using a Chow-Liu tree. The proposed
algorithm improves upon existing methods in two key ways:
First, it is not limited to strictly full-state relative-pose constraints
and works equally well with other low-rank constraints such as
those produced by monocular vision. Second, the new factors are
produced in a way that accounts for measurement correlation, a
problem ignored in other methods that rely upon measurement
composition. We evaluate the proposed method over several real-
world SLAM graphs and show that it outperforms other state-
of-the-art methods in terms of Kullback-Leibler divergence.

I. INTRODUCTION

Pose-graph simultaneous localization and mapping (SLAM)

[1]–[5] has been demonstrated successfully over a wide variety

of applications. Unfortunately, the standard pose-graph formu-

lation is not ideal for long-term applications as the size of the

graph grows with time and spatial extent—even if a robot is

working in a finite region (since it must continue to add nodes

and measurements to the graph in order to stay localized).

This paper seeks to address this challenge by developing a

new method that allows one to remove nodes and factors from

the graph, thereby reducing inference complexity and allowing

for graph maintainability. Our proposed algorithm is designed

so that it meets the following criteria:

• The algorithm produces a new set of independent factors

using the current graph factors as input. The method does

not require the full linearized information matrix as input.

• The algorithm is able to produce constraints that can rep-

resent exact node marginalization, as well as constraints

that can represent a sparse Chou-Liu tree approximation

of the dense marginal.

• The algorithm works equally well with non full-state con-

straints. Constraints with lower degree of freedom (DOF)

than full state (e.g., bearing-only, range-only and partial

This work was supported in part by the National Science Foundation under
award IIS-0746455, and in part by the Office of Naval Research under award
N00014-12-1-0092.

N. Carlevaris-Bianco is with the Department of Electrical Engineering &
Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
carlevar@umich.edu

R. Eustice is with the Department of Naval Architecture & Ma-
rine Engineering, University of Michigan, Ann Arbor, MI 48109, USA
eustice@umich.edu

(a) Original graph (b) Dense GLC (c) Sparse GLC

Fig. 1: Depiction of dense-exact and sparse-approximate generic
linear constraint (GLC) node removal for the Duderstat SLAM pose-
graph. 33.3% of nodes from the original graph are removed. Green
links represent new GLC constraints.

state constraints) are handled under the same framework

as full-state constraints, without special consideration.

• The new factors are produced in a way that does not

double count measurement information. As we will show

in §II, methods based on the pairwise composition of

measurements produce pairwise constraints that are not

independent, which leads to inconsistency in the graph.

• The computational complexity of the algorithm is de-

pendent only on the number of nodes and factors in the

elimination clique, not on the size of the graph beyond

the clique.

• The algorithm does not require committing to a world-

frame linearization point, rather, the new factors are

parametrized in such a way as to use a local linearization

that is valid independent of the global reference frame.

This allows for the exploitation of methods that re-

linearize during optimization (e.g., [1], [2], [5]).

Methods that seek to slow the rate of growth of the pose-

graph exist. In [6], an information-theoretic approach is used

to add only non-redundant nodes and highly-informative mea-

surements to the graph. Similarly, [7] induces new constraints

between existing nodes when possible, instead of adding new

nodes to the graph. In this formulation the number of nodes

grows only with spatial extent, not with mapping duration—

though the number of factors and connectivity density within

the graph remain unbounded.

Methods that work directly on the linearized information

matrix (best suited for filtering-based SLAM solutions) include

[8]–[10]. In [8], weak links between nodes are removed to en-

force sparsity. Unfortunately, this removal method causes the

resulting estimate to be overconfident [11]. In [9], odometry

links are removed in order to enforce sparsity in feature-based

SLAM. Recently, [10] proposed an optimization-based method

that minimizes the Kullback-Leibler divergence (KLD) of the
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Fig. 2: Measurement composition vs. marginalization. The top row
shows the factor graph; bottom row shows its Markov random field.

information matrix while enforcing a sparsity pattern and the

requirement that the estimated information is conservative.

This method performs favorably in comparison with [9] and

[8], but requires a large matrix inversion in order to formulate

the optimization problem, which limits its online utility.

For full-state constraints (i.e., 3- or 6-DOF relative-pose

constraints depending on application) it is possible to compose

constraints and their associated uncertainty. The basic compo-

sition functions for compounding and inversion are reported

in [12]. Measurement composition is used in [13]–[15] in

order to produce a new set of constraints when nodes are

removed. In [13], all composed constraints are kept, causing

fill-in within the graph. In order to preserve sparsity, a subset

of the composed edges are pruned in [14] using a heuristic

based on node degree. In [15], composed-edge removal is

guided by a Chow-Liu tree calculated over the conditional

information of the elimination clique.

These composition-based methods meet many of the afore-

mentioned design criteria. They produce a new set of fac-

tors using the existing factors as input, the computational

complexity is only dependent on the number of nodes and

factors in the elimination clique, and the new factors can

be re-linearized during subsequent optimization. However, as

we show in §II, pairwise measurement composition is not

marginalization, and yields inconsistent estimates in all but

the simplest of graph topologies (since the composed pairwise

constraints are assumed to be independent, which they are not).

Additionally, it is not uncommon for a graph to be composed

of many different types of non-full-state constraints, such as

bearing-only, range-only and other partial-state constraints. In

these heterogeneous cases, measurement composition quickly

becomes complicated as the constraint composition rules for

all possible pairs of measurement types must be defined.

The remainder of this paper is outlined as follows: In

Section II we discuss the pitfalls associated with the use of

measurement composition for node removal. Our proposed

method is then described in Section III and experimentally

evaluated in Section IV. Finally, Sections V and VI offer a

discussion and concluding remarks.

II. PAIRWISE COMPOSITION 6= MARGINALIZATION

Consider the simple pose-graph depicted in Fig. 2(a) where

we show both its factor graph and Markov random field (MRF)

representations. Suppose that we wish to marginalize node x1.

Following [14], [15], and using the composition notation of

[12], we can compose the pairwise measurements to produce

the graph depicted in Fig. 2(b) as follows,

z
′
02 = h1(z01, z12) = z01 ⊕ z12,

z
′
03 = h2(z01, z13) = z01 ⊕ z13,

z
′
23 = h3(z12, z13) = ⊖z12 ⊕ z13.

(1)

These composed measurements are meant to capture the fully

connected graph topology that develops in the elimination

clique once x1 has been marginalized. In [14], [15], this

composition graph forms the conceptual basis from which

their link sparsification method then acts to prune edges and

produce a sparsely connected graph. The problem with this

composition is that the pairwise edges/factors in Fig. 2(b) are

assumed to be independent, which they are not.

It should be clear that the composed measurements in (1)

are correlated, as z
′
02, z′03 and z

′
23 share common information

(e.g., z
′
02 and z

′
03 both share z01 as input), yet, if we treat

these factors as strictly pairwise, we are unable to capture

this correlation. Now consider instead a stacked measurement

model defined as

zs =





z
′
02

z
′
03

z
′
23



 = h









z01
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z13







 =





z01 ⊕ z12

z01 ⊕ z13

⊖z12 ⊕ z13



 . (2)

Its first-order uncertainty is given as

Σs = H





Σ01 0 0
0 Σ12 0
0 0 Σ13



H⊤,

where
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







.

The joint composition in (2) produces the factor graph

shown in Fig. 2(c), where in this formulation we see that Σs

captures the correlation between the compounded measure-

ments. In order to do this, it requires a trinary factor with

support including all three variables,

zs =





z
′
02

z
′
03

z
′
23



 = f









x0

x2

x3







 =





⊖x0 ⊕ x2

⊖x0 ⊕ x3

⊖x2 ⊕ x3



+w, (3)

where w ∼ N
(

0,Σs

)

.

It is this inability of pairwise factors to capture correlation

between composed measurements that causes simple com-

pounding to be wrong. Note that the graphs in Fig. 2(b) and

Fig. 2(c) have the same Markov network representation and

information matrix sparsity pattern. The difference between

the binary and trinary factorization is only made explicit in

the factor graph representation. The two observations: (i) that

composed measurements are often correlated, and (ii) that

representing the potential of an elimination clique with n

nodes requires n-nary factors, will prove important in the

remainder of the paper.



Fig. 3: Sample factor graph where node x1 is to be marginalized. Here
Xm = [x0,x1,x2,x3]. The factors Zm = [z0, z01, z12, z23, z13]
(highlighted in red) are those included in calculating the target
information, Λt.

III. METHOD

The proposed method consists of two main parts. First, we

compute the information induced by marginalization over the

elimination clique. We refer to this information matrix as the

target information, Λt. Second, we use Λt to compute either

(i) an exact n-nary factor that produces an equivalent potential

over the elimination clique (in the case of dense node removal),

or (ii) a sparse set of factors that best approximate the true

distribution over the elimination clique using a Chow-Liu tree

(in the case of sparsified node removal). Having computed this

new set of factors, we can simply remove the marginalization

node from the graph and replace its surrounding factors with

the newly computed set.

A. Building the target information

The first step in the algorithm is to correctly identify the

target information, Λt. Letting Xm ⊂ X be the subset of

nodes including the node to be removed and the nodes in

its Markov blanket, and letting Zm ⊂ Z be the subset of

measurement factors that only depend on the nodes in Xm we

consider the distribution p(Xm|Zm) ∼ N−1
(

ηm,Λm

)

. From

Λm we can then compute the desired target information, Λt,

by marginalizing out the elimination node using the standard

Schur-complement form. For example, in the graph shown in

Fig. 3, to eliminate node x1 we would first calculate Λm using

the standard information-form measurement update equations

[8], [11] as

Λm = H⊤
0 Λ0H0 +H⊤

01Λ01H01 +H⊤
12Λ12H12

+H⊤
23Λ23H23 +H⊤

13Λ13H13,

where Hij are the Jacobians of the observation models for

measurements zij with information matrices Λij , and then

compute the target information as

Λt = Λαα − ΛαβΛ
−1
ββΛ

⊤
αβ ,

where Λαα, Λαβ and Λββ are the required sub-blocks of Λm

with α = [x0,x2,x3] and β = [x1]. Note that, though this

example only contains unary and binary factors, general n-

nary factors are equally acceptable.

The key observation when identifying the target information

is that, for a given linearization point, a single n-nary factor

can recreate the potential induced by the original pairwise

factors by adding the same information (i.e., Λm) to the

graph. Moreover, because marginalization only affects the

information matrix blocks corresponding to nodes within the

elimination clique, an n-nary factor that adds the information

contained in Λt to the graph will induce the same potential in

the graph as true node marginalization at the given lineariza-

tion point.

Note that the target information, Λt, is not the conditional

distribution of the elimination clique given the rest of the

nodes, i.e., p(x0,x2,x3|x4,Z), nor is it the marginal distri-

bution of the elimination clique, i.e., p(x0,x2,x3|Z). Using

either of these distributions as the target information results in

a wrong estimate as information will be double counted when

the n-nary factor is reinserted into the graph.

It is also important to note that the constraints in Zm may

be purely relative and/or low-rank (e.g., bearing or range-only)

and, therefore, may not fully constrain p(Xm|Zm). This can

cause Λt to be singular. Additionally, some of Λt’s block-

diagonal elements may also be singular. This will require

special consideration in subsequent sections.

B. Generic linear constraints

Having defined a method for calculating the target informa-

tion, Λt, we now seek to produce an n-nary factor that captures

the same potential. We refer to this new n-nary factor as a

generic linear constraint (GLC). Letting xc denote a stacked

vector of the variables within the elimination clique after node

removal, we begin by considering an observation model that

directly observes xc with a measurement uncertainty that is

defined by the target information:

z = xc +w where w ∼ N−1
(

0,Λt

)

. (4)

Setting the measurement value, z, equal to the current lin-

earization point, x̂c, induces the desired potential in the graph.

Unfortunately, the target information, Λt, may not be full rank,

which is problematic for optimization methods that rely upon

a square root factorization of the measurement information

matrix [1], [5]. We can, however, use principle component

analysis to transform the measurement to a lower-dimensional

representation that is full rank.

We know that Λt will be a real, symmetric, positive semi-

definite matrix due to the nature of its construction. In general

then, it has an eigen-decomposition given by

Λt =
[

u1 · · · uq

]







λ1 0 0

0
. . . 0

0 0 λq













u
⊤
1
...

u
⊤
q






= UDU⊤,

(5)

where U is a p × q matrix, D is a q × q matrix, p is the

dimension of Λt, and q = rank(Λt). Letting G = D
1

2U⊤

allows us to write a transformed observation model,

zglc = Gz = Gxc +w
′ where w

′ ∼ N−1
(

0,Λ′
)

. (6)

Using the pseudo-inverse [16], Λ+
t = UD−1U⊤, and noting

that U⊤U = Iq×q, we find that

Λ′ = (GΛ+
t G

⊤)−1 = (D
1

2U⊤(UD−1U⊤)UD
1

2 )−1 = Iq×q.



This GLC factor will contribute the desired target information

back to the graph, i.e.,

G⊤Λ′G = G⊤Iq×qG = Λt,

but is itself non-singular. This is the key advantage of the

proposed GLC method; it automatically determines the appro-

priate measurement rank such that Λ′ is q × q and invertible,

and G is an p × q new observation model that maps the p-

dimensional state to the q-dimensional measurement.

C. Avoiding world-frame linearization in GLC

At this point, the GLC method still fails to meet our initial

design criteria because it linearizes the potential with respect to

the state variables in the world-frame. This may be acceptable

in applications where a good world-frame linearization point

is known prior to marginalization; however, in general, a more

tenable assumption is that a good linearization point exists for

the local relative-frame transforms between nodes within the

elimination clique.

To adapt GLC so that it only locally linearizes the relative

transformations between variables in the elimination clique,

we first define a “root-shift” function that maps its world-frame

coordinates, xc, to relative-frame coordinates, xr. Letting x
i
j

denote the jth pose in the ith frame, the root-shift function

for xc becomes

xr =











x
1
w

x
1
2
...

x
1
n











= r (xc) = r
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














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1

x
w
2
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x
w
n





















=











⊖x
w
1

⊖x
w
1 ⊕ x

w
2

...

⊖x
w
1 ⊕ x

w
n











. (7)

In this function the first node is arbitrarily chosen as the root

of all relative transforms. The inclusion of the inverse of the

root pose, x1
w, is important as it ensures that the Jacobian of

the root-shift operation, R, is invertible, and allows for the

representation of target information that is not purely relative.

To derive, instead of starting with a direct observation of the

state variables, as in (4), we instead start with their root-shifted

relative transforms,

zr = xr +wr where wr ∼ N−1
(

0,Λtr

)

. (8)

Here, the root-shifted target information, Λtr , is calculated

using the fact that the root-shift Jacobian, R, is invertible,

Λtr = R−⊤ΛtR
−1. (9)

Like the original target information, the root-shifted target

information, Λtr , will also be low-rank. Following the same

principal component analysis procedure as before, we perform

the low-rank eigen-decomposition Λtr = UrDrU
⊤
r , which

yields a new observation model,

zglcr = Grr(xc) +w
′
r where w

′
r ∼ N−1

(

0,Λ′
r

)

, (10)

where Gr = D
1

2

r U⊤
r , and measurement information Λ′

r =
Iq×q . Using the root-shifted linearization point to compute the

measurement value, zglcr = Grr(x̂c), will again induce the

desired potential in the graph. Now, however, the advantage is
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Fig. 4: Demonstration of root-shifted vs. world-frame GLC factors.
Depicted is a simple graph (a) that is initially constructed with
two well-connected clusters connected by a highly-uncertain and
inaccurate link. The center (magenta) node in each cluster is removed
inducing a GLC factor over each cluster. Subsequently, a second
measurement is then added between the two clusters, correcting
the world-frame location of the upper-right cluster. After adding
the strong inter-cluster constraint, the graph with the world-frame
linearized GLCs fails to converge to the correct optima (b), while
the graph with root-shifted GLCs does (c). The Kullback-Leibler
divergence from the true marginalization is displayed for each test.

that the GLC factor embeds the linearized constraint within a

relative coordinate frame defined by the clique, as opposed to

an absolute coordinate world-frame. Fig. 4 demonstrates this

benefit.

D. Sparse approximate node removal

Exact node marginalization causes dense fill-in. As the

number of marginalized nodes increases, this dense fill-in can

quickly reduce the graph’s sparsity and greatly increase the

computational complexity of optimizing the graph [1], [5]. In

[15], Kretzschmar and Stachniss insightfully propose the use

of a Chow-Liu tree (CLT) [17] to approximate the individual

elimination cliques as sparse tree structures.

The CLT approximates a joint distribution as the product of

pairwise conditional distributions,

p(x1, · · · ,xn) ≈ p(x1)

n
∏

i=2

p(xi|xp(i)), (11)

where x1 is the root variable of the CLT and xp(i) is the parent

of xi. The pairwise conditional distributions are selected such

that the KLD between the original distribution and the CLT

approximation is minimized. To construct it, the maximum

spanning tree over all possible pairwise mutual information

pairings is found (Fig. 5), where the mutual information

between two Gaussian random vectors,

p(xi,xj) ∼ N
([

µi
µj

]

,
[ Σii Σij

Σji Σjj

])

≡ N−1
([

ηi
ηj

]

,
[ Λii Λij

Λji Λjj

])

,

(12)



Fig. 5: Illustration of the Chow-Liu tree approximation. The mag-
nitude of mutual information between variables is indicated by
line thickness. The original distribution p(x1, x2, x3, x4) (left), is
approximated as p(x1)p(x3|x1)p(x2|x3)p(x4|x3) (right).

is given by [18]

I(xi,xj) =
1

2
log

(

|Λii|

|Λii − ΛijΛ
−1
jj Λji|

)

. (13)

Like [15], we can apply the CLT approximation to sparsify

our n-nary GLC factors; however, our implementation of CLT-

based sparsification differs in a few subtle, yet important,

ways. In [15], the maximum mutual information spanning tree

is computed over the conditional distribution of the elimination

clique given the remainder of the graph. This tree is then used

to guide which edges should be composed and which edges

should be excluded. This is not ideal for two reasons. First,

the conditional distribution of the elimination clique is not the

distribution that we wish to reproduce by our new factors (see

§III-A). Second, pairwise measurement composition fails to

track the proper correlation (see §II).

We address these issues by computing the CLT distribution

(11) from the target information, Λt, which is the distribution

that we wish to approximate, and then represent the CLT’s

unary and binary potentials as GLC factors.

1) CLT factors: To start, let’s first consider CLT binary

potentials, p(xi|xp(i)), and in the following use xj = xp(i)

as shorthand for the parent node of xi. We note that the

target-information-derived joint marginal, pt(xi,xj), can be

computed from Λt and written as in (12).1 From this joint

marginal, we can then easily write the desired conditional,

pt(xi|xj) = N
(

µi|j ,Σi|j

)

≡ N−1
(

ηi|j ,Λi|j

)

, and express it

as a constraint as

e = xi − µi|j = xi − Λ−1
ii (ηi − Λijxj), (14)

where e ∼ N−1
(

0,Λi|j

)

, and with Jacobian,

E =
[

∂e
∂xi

∂e
∂xj

]

=
[

I Λ−1
ii Λij

]

. (15)

Therefore, using the standard information-form measurement

update, we see that this constraint adds information

E⊤Λi|jE, (16)

where Λi|j is simply Λii.

Treating (16) as the input target information, we can pro-

duce an equivalent GLC factor for this binary potential using

the techniques described in §III-B and §III-C. Similarly, the

CLT’s root unary potential, pt(x1), can also be implemented as

1In this section, when we refer to marginal and conditional distributions,
they are with respect to the target information, Λt, not with respect to
the distribution represented by the full graph. See [3] for a summary of
marginalization and conditioning operations for Gaussian variables.

a GLC factor by using the target-information-derived marginal

information, Λ11, and the sames techniques.

2) Pseudo-inverse: As discussed in Section III-A, the target

information, Λt, is generally low rank. This is problematic for

the joint marginal (12) and conditioning (14)–(15) calculations

used to compute the CLT, as matrix inversions are required.

To address this issue, in place of the inverse we use the

generalized- or pseudo-inverse [16, §10.5], which can be cal-

culated via an eigen-decomposition for real, symmetric, posi-

tive semi-definite matrices. For full-rank matrices the pseudo-

inverse produces the same result as the true inverse, while

for low rank matrices it remains well defined. Calculating

the pseudo-inverse numerically requires defining a tolerance

below which eigenvalues are considered to be zero. We found

that our results are fairly insensitive to this tolerance and that

automatically calculating the numerical tolerance using the

machine epsilon produced good results. In our experiments

we use ǫ × n × λmax (the product of the machine epsilon,

the size of the matrix, and the maximum eigenvalue) as the

numerical tolerance.

3) Pinning: When calculating the pairwise mutual infor-

mation, the determinants of both the conditional and marginal

information matrices in (13) must be non-zero, which is again

problematic because these matrices are generally low-rank

as calculated from the target information, Λt. It has been

proposed to consider the product of the non-zero eigenvalues

as a pseudo-determinant [16], [19] when working with sin-

gular, multivariate, Gaussian distributions. Like the pseudo-

inverse, this requires determining zero eigenvalues numeri-

cally. Experimentally, however, we found that in some cases

the numerical instability in the pseudo-determinant’s reliance

on the numerical tolerance results in the edges being sorted

incorrectly. This results in a non-optimal structure when the

maximum mutual information spanning tree is built and,

therefore, a slightly higher KLD from the true marginalization

in some graphs.

Instead, we recognize that the CLT’s construction requires

only the ability to sort pairwise links by their relative mutual

information (13), and not the actual value of their mutual

information. A method that slightly modifies the input matrix

so that its determinant is non-zero, without greatly affecting

the relative ordering of the edges, would also be acceptable.

Along these lines we approximate the determinant of a singular

matrix using

|Λ| ≈ |Λ + αI|. (17)

This can be thought of as applying a low-certainty prior on

the distribution, and we therefore refer to it as “pinning”.2

Experimentally we found the quality of the results to be less

sensitive to the value of α than the numerical epsilon in the

pseudo-determinant. We, therefore, elected to use pinning with

α = 1 in our experiments when evaluating the determinants

in the pairwise mutual information (13).

2This is related to the derivation of the pseudo-determinant in [19], which
uses a similar form in the limit as α → 0.



TABLE I: Experimental Datasets

Dataset Robot Factor Types # Nodes # Factors Λ % NZ

Duderstadt Center Segway 6-DOF odometry, 6-DOF laser scan-matching 552 1,774 1.12%
EECS Building Segway 6-DOF odometry, 6-DOF laser scan-matching 611 2,134 1.20%
USS Saratoga HAUV 6-DOF odometry, 5-DOF monocular-vision, 1-DOF depth 1,513 5,433 0.35%

TABLE II: Experimental Results

Dense GLC Sparse GLC

% Nodes Removed 25.0 % 33.3 % 50.0 % 66.6 % 25.0 % 33.3 % 50.0 % 66.6 % 75.0 %

Duderstadt Center KLD 2.481 0.515 0.009 1.710E-8 7.295 5.793 4.219 5.855 5.939
EECS Building KLD 7.630 3.882 1.679E-8 8.207E-8 13.170 11.944 7.313 11.204 16.540
USS Saratoga KLD 108.040 77.000 0.708 2.682 113.481 94.836 10.216 3.907 1.837

Duderstadt Center time (ms/node) 5.2 17.4 78.5 3.2E4 10.1 10.0 7.4 7.3 7.0
EECS Building time (ms/node) 840.8 538.1 4.6E4 6.0E4 78.5 49.9 16.4 11.7 15.2
USS Saratoga time (ms/node) 6.4 1.1E3 4.5E3 1.2E4 7.3 7.2 6.0 4.9 4.4

Dense Pairwise Measurement Composition Sparse Pairwise Measurement Composition

% Nodes Removed 25.0 % 33.3 % 50.0 % 66.6 % 25.0 % 33.3 % 50.0 % 66.6 % 75.0 %

Duderstadt Center KLD 204.200 473.213 3.544E4 N/A 7.198 7.176 23.461 24.399 158.209
EECS Building KLD 9.984E4 2.871E4 N/A N/A 19.282 13.188 33.840 414.370 411.717

E. Computational complexity

The core operations that GLC relies on, in and of them-

selves, are computationally expensive. The CLT approximation

has a complexity of O(m2 logm), where m is the number of

nodes. Matrix operations on the information matrix with n

variables, including the eigen-decomposition, matrix multipli-

cation, and inversion operations, have a complexity of O(n3).
Fortunately, the input size for these operations is limited to

the number of nodes within the elimination clique, which in

a SLAM pose-graph is controlled by the perceptual radius. In

general, the number of nodes and variables in an elimination

clique is much less than the total number of nodes in the full-

graph, which makes GLC’s calculations easily feasible.

IV. EXPERIMENTAL RESULTS

The proposed algorithm was implemented using iSAM

[5], [20] as the underlying optimization engine. The code

is available for download within the iSAM repository [21].

For comparison, a dense measurement composing method as

described in §II, and a sparse measurement composing method

based upon CLT-guided node removal, as proposed in [15],

were also implemented. For evaluation we use three SLAM

pose-graphs: The first two graphs were built using data from

a Segway ground robot equipped with a Velodyne HDL-32E

laser scanner as the primary sensing modality. The third graph

was produced by a Hovering Autonomous Underwater Vehicle

(HAUV) performing monocular SLAM for autonomous ship

hull inspection [22]. These graphs are characterized in Table I

and a depiction of each are shown in Fig. 1, Fig. 6 and

Fig. 7. In the following experiments, the original full graph is

first optimized using iSAM. Then the different node removal

algorithms are each performed to remove a percentage of

nodes evenly spaced throughout the trajectory. Finally, the

graphs are again optimized in iSAM. For each experiment

the true marginal distribution is recovered by obtaining the

linearized information matrix about the optimization point

and performing Schur complement marginalization, which

provides a ground-truth distribution.

(a) EECS original graph

(b) Dense GLC (c) Sparse GLC

Fig. 6: Comparison of the original graph, dense-exact GLC, and
sparse-approximate GLC node removal for the EECS graph. 33.3% of
original nodes are removed. Blue links represent 6-DOF constraints,
and green links represent new GLC constraints.

A summary of our results are provided in Table II, which

shows the KL-divergence from the true marginalization and

average computation time per node removed, as an increasing

percentage of nodes are removed from the graph. Results for

dense-exact and sparse-approximate GLC are provided for all

three graphs, while results for dense and sparse-approximate

measurement composition are provided only for the Duder-

stadt and EECS datasets. The Saratoga graph is excluded as it

contains 5-DOF monocular relative-pose constraints for which

measurement composition is ill-defined.

A. Dense GLC node removal

We first consider the results for our method when perform-

ing exact node removal with dense fill-in. Visual depictions

of the resulting dense GLC graphs for the Duderstadt, EECS,

and Saratoga datasets are shown in Fig. 1(b), Fig. 6(b), and

Fig. 7(b), respectively.

To put GLC’s KLD values from Table II into perspective,

we look at the case with the highest KLD, which is the

Saratoga graph with 25% of nodes removed (i.e., KLD =
108.040). Under these conditions the reconstructed graph has



(a) USS Saratoga original graph

(b) Dense GLC

(c) Sparse GLC

Fig. 7: Comparison of the original graph, dense-exact GLC, and
sparse-approximate GLC node removal for the Saratoga graph. 50%
of original nodes are removed. Blue, red and green links represent 6-
DOF constraints, 5-DOF monocular vision constraints, and new GLC
constraints, respectively.
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Fig. 8: Accuracy of GLC-derived marginals for the Saratoga data
set with 25% of nodes removed. The min and max eigenvalues of
the difference between the GLC marginals and the true marginals
for each pose are plotted for both dense and sparse GLC. Note the
eigenvalue scale is O(10−6).

a mean squared error in translation and rotation of 0.64 mm
and 1.2 mrad, respectively, when compared to the original

baseline pose-graph SLAM result. To more systematically

investigate the accuracy of GLC’s marginal pose uncertainties,

a plot of the minimum and maximum eigenvalues of the

difference between the GLC marginals and the true marginals,

ΣGLC
ii − ΣTRUE

ii , is shown in Fig. 8. In the ideal case all

eigenvalues of this difference will be zero, indicating perfect

agreement between GLC and the true marginalization. Eigen-

values larger than zero indicate conservative estimates while

those less than zero indicate over-confidence. For dense GLC

we see that these eigenvalues are on the order of 10−6 in

magnitude, indicating excellent agreement between GLC and

the true marginalization.

Considering the results for dense measurement composi-

tion, Table II shows that it performs quite poorly—as more

nodes are removed, the KLD increases. This is because dense

pairwise measurement composition fails to properly track the

correlation that develops between composed measurements (as

demonstrated in §II); thus, the higher the connectivity in the

graph, the more measurement information gets double counted

when compounding. This results in overconfidence as well as

a shift in the optimal mean (Fig. 9(b)). In fact, for both the

EECS and Duderstadt graphs, a point was reached where the

constraints were so overconfident due to node removal that
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(a) Dense GLC
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(b) Dense measurement composition

Fig. 9: Sample 3-σ uncertainty ellipses for the EECS graph with
33.3% node removal using dense GLC and dense measurement
composition. The true marginalization uncertainties are shown in red.
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(a) Sparse GLC
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(b) Sparse measurement composition

Fig. 10: Sample 3-σ uncertainty ellipses for the EECS graph with
75% node removal using sparse GLC and sparse measurement com-
position, as proposed in [15]. The true marginalization uncertainties
are shown in red.

the iSAM optimization diverged—these cases are labeled as

“N/A” in Table II.

B. Sparse-approximate GLC node removal

Next we consider the results for sparse-approximate GLC

marginalization. Table II shows that in many instances the

KLD for sparse-approximate GLC is only slightly worse

than that of dense-exact GLC—indicating that very little

graph information is lost due to CLT sparsification. Visual

examples for sparsification on the Duderstadt, EECS, and

Saratoga graphs are shown in Fig. 1(c), Fig. 6(c) and Fig. 7(c),

respectively.

Considering the results for sparse measurement composi-

tion, Table II shows that, unlike dense measurement com-

position, sparse measurement composition performs reason-

ably well, especially when removing a smaller percentage of

nodes. This is because information double counting during

measurement composition accumulates to a lesser extent than

in the dense case because of sparsification. However, as the

percentage of removed nodes increases, we see that sparse

measurement composition produces a significantly less accu-

rate and more inconsistent result than sparse GLC (Fig. 11).

Visually, however, sparse composition’s marginal 3-σ uncer-

tainty ellipses appear to be quite reasonable, as depicted in

Fig. 10 for the EECS graph, though, we see that they are less

accurate than sparse GLC.

V. DISCUSSION AND FUTURE WORK

When considering the application of the proposed method,

there are a few things to consider, some of which we hope

to address in future work. First, when performing GLC, a
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(a) Duderstadt Sparse (75% Removed)
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(b) EECS Sparse (75% Removed)

Fig. 11: Comparison of marginal distribution accuracy between sparse
GLC and sparse measurement composition, as proposed in [15], for
the Duderstadt and EECS graphs. The min and max eigenvalues of the
difference between the sparsified marginals and the true marginals for
each pose are plotted. The results show that sparse GLC consistently
outperforms sparse measurement composition in approaching the true
marginal.

good linearization point for the relative transforms within the

elimination clique must exist. This affects when it is appro-

priate to remove nodes, especially if performing online node

removal. Second, because the target information is low rank,

we use “pinning” to compute the mutual information when

building the CLT and therefore, cannot guarantee that this

yields a minimum KLD from the true distribution (though our

experimental results show that we achieve a significantly lower

KLD than other state-of-the-art methods). Third, because the

CLT approximation itself is not guaranteed to be conservative,

we cannot guarantee a conservative estimate when performing

sparse approximate GLC node removal.

In fact, our results showed that CLT-based GLC sparse

approximation can be either slightly conservative (Fig. 8 and

Fig. 11(a)), or slightly over-confident (Fig. 11(b)). While our

proposed GLC method avoids inconsistency pitfalls associated

with measurement compounding, and accurately recreates the

CLT, it may still be slightly overconfident if the CLT approx-

imation is. In this regard, the method proposed in [10], which

optimizes the KLD of a sparse distribution while enforcing a

consistency constraint, could provide a way forward toward

this end.

VI. CONCLUSIONS

We presented a factor-based method for node removal in

SLAM pose-graphs. This method can be used to alleviate

some of the computational challenges in performing inference

over long-term pose-graphs by reducing the graph size and

density. The proposed method is able to represent either

exact marginalization, or a sparse approximation of the true

marginalization, in a consistent manner over a heterogeneous

collection of constraints. We experimentally evaluated the

proposed method over several real-world SLAM graphs and

showed that it outperformed other state-of-the-art methods in

terms of Kullback-Leibler divergence.
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