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Fig. 1: Illustration of an “exemplar” based map representation. Locations are modeled as “metric” neighborhoods, Ni for i = [1 . . . n].
The visual appearance of each neighborhood is represented by a set of exemplar views, Ei

j for j = [1 . . .mi], which seek to represent
the possible variation in appearance of a location due to temporal changes in the environment. Our proposed method learns the
temporal observability relationships between exemplars allowing one to predict which exemplars will be observed based on recent
measurements. The temporal observability relationships are illustrated as red links with the sign indicating the sign of the correlation.

Abstract—This paper reports on a method that learns the tem-
poral co-observability relationships for exemplar views of a dy-
namic environment collected during long-term robotic mapping.
These relationships are efficiently captured using a Chow-Liu tree
approximation and allow one to predict which exemplars will be
observed by the robot given the robot’s recent observations. For
example, these learned relationships can encode scene dependent
changes in lighting due to time of day and weather, without
explicitly modeling them. Preliminary experimental results are
shown using images from 17 fixed locations collected hourly over
the course of 116 days.

I. INTRODUCTION

Recent work has sought to address the challenge of robotic

simultaneous localization and mapping (SLAM) in dynamic

environments by using a map representation that encodes both

spatial and temporal information. Promising examples of these

methods elect to represent locations in the map as a collection

of views [1], environmental states [2], or view sequences [3],

corresponding to how the environment appeared at various

observation instances. These “exemplar” based methods are

capable of representing many different types of temporal

variation. It is our opinion that these methods provide a
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promising way forward toward developing SLAM systems for

long-term autonomy in dynamic environments.

Current methods do not attempt to understand the temporal

relationship between map exemplars. Data association is per-

formed by comparing the current sensor measurement against

all possible exemplars to determine which best explains the

current measurement. Essentially, the robot considers all pos-

sible temporal variations of a location every time it attempts to

measure the environment. This results in a map that grows both

with spatial extent and with the amount of dynamic variation

in the environment.

In this paper we present a method that learns the temporal

observability relationships between exemplars in the map.

These relationships can be used to predict which exemplars

will be observed given what the robot has recently observed.

Conceptually this can be thought of as producing a maximum

likelihood (ML) temporal map.

The learned relationships encode many different types of

temporal changes, without explicitly modeling them. For ex-

ample, the proposed method learns groupings of exemplars

caused by changes in lighting between morning, noon, and

night, even though the time of day is not a modeled input

to the system. The structure of the correlation learned by

the proposed method is determined by the properties of the

sensor system. In the case of vision the correlation structure

is primarily defined by changes in lighting. This would not

be true in the case of light detection and ranging (LIDAR),

which is invariant to changes in illumination and would be

more affected by changes in geometric structure and occlusion.

Our motivation for this work is a centralized multi-agent

system in which a common map is shared between many



agents. We advocate in Section V that the proposed algorithm

is particularly well suited for this scenario. The remainder

of the paper is outlined as follows. In Section II we review

related work. The proposed method is described in Section III.

Finally, our experimental results are presented and discussed

in Sections IV and V, respectively. Section VI concludes.

II. RELATED WORK

The majority of SLAM solutions, to date, make the as-

sumption that the environment is static. For many robotic

applications this assumption is not extremely detrimental. This

is especially true for systems that exploit robust data associ-

ation methods, notably image and laser range registration, as

these methods are capable of successful measurements in the

presence of short-term dynamic effects, such as partial scene

occlusion and moving objects.

Several methods have been proposed that try to filter out

dynamic elements of the environment while maintaining the

assumption that the underlying environment is static, for

example [4]–[7], among others. It has also been shown that it

is possible to explicitly identify and track specific classes of

dynamic objects in the environment such as people [8].

Recently, several works have proposed methods that explic-

itly model dynamic changes in the map. In [9], [10], Biber and

Duckett represent the environment by a collection of sample-

based maps, each of which incorporates new samples and

forgets old samples at a different rate. This rate determines

the timescale of each map. During localization the robot tests

all timescales to determine which best agrees with the current

observation and then performs measurement updates against

that map. In some respects this representation is similar to

the exemplar-based methods that this paper expands upon, as

each map could be thought of as a type of exemplar. They are

not exactly equivalent though, due to the fact that in this case

each timescale-sampled map is a collection of data measured

at multiple instances in time, and not a collection of a single-

time-instance example views of the environment. The idea of

sample-based maps is continued by Dayoub and Duckett in

[11], which uses a short-term versus long-term memory model

to update the collection of visual features that represent the

appearance of a location. In [12] a method is presented which

uses a “dynamic occupancy grid” based on a hidden Markov

model to capture dynamic changes in the environment.

The works most relevant to our proposed method can

be considered as “exemplar-based” methods [1]–[3]. In [2]

Stachniss and Burgard propose a method to learn exemplar

configurations of an indoor environment from 2D laser scan

data using fuzzy k-means clustering. They then use these

exemplar configurations in a particle-filter based localization

framework. Konolige and Bowman present a vision-based

method in [1]. This method works within the context of vision

based pose-graph SLAM [13], where the pose-graph is divided

into metric neighborhoods of views bounded by physical

location and view attitude. Within these neighborhoods each

view is an example of how the environment looked at the time

it was collected. They then present a least-recently-used view

deletion algorithm, which limits the number of exemplars per

neighborhood to a fixed number and encourages a long-term

equilibrium with the minimum set of exemplars that explains

the visual variation of that neighborhood. In [3], Churchill and

Newman use sequences of views, termed “experiences”, as the

basic unit of the temporal map instead of individual views.

New experiences are added to the map when the existing

experiences are unable to explain the current observations.

The map representation used in this paper, including the idea

of exemplars and their use in metric neighborhoods, was first

introduced in [1]. Our contribution beyond existing exemplar-

based methods, [1]–[3], is an algorithm to learn the temporal

observability relationships between exemplars throughout the

map. This allows one to predict which exemplar within a yet

unseen neighborhood is most likely to be observed given the

most recent exemplar observations from other neighborhoods,

which avoids having to compare the robot’s current view

against all exemplars at each neighborhood.

III. LEARNING TEMPORAL OBSERVABILITY

RELATIONSHIPS BETWEEN EXEMPLARS

The proposed algorithm uses a map representation that

models each location as a “spatial” or “metric” neighborhood,

Ni for i = [1 . . . n]. Each neighborhood represents a physical

space in the environment. The nature of this space is defined by

the choice of sensing modality so that measurements within the

neighborhood should overlap sufficiently for registration. For

example, in the case of omnidirectional vision or 2D LIDAR

a neighborhood may be defined as a max translation between

any two views. For monocular vision, one would also need

to include the vantage point of the camera. The appearance,

geometric shape, or state of each neighborhood is represented

by a set of “exemplar” views, Ei
j for j = [1 . . .mi], which seek

to represent the possible variation in appearance or structure

of a location due to temporal changes in the environment, as

illustrated in Fig. 1.

In order to learn the temporal observability relationships

between map exemplars, and to predict the observability of

each exemplar in the map, we wish to estimate the joint

distribution of the probability that each exemplar will be

observed during a given time window of length λ. Let Zk

be a binary random variable representing if the kth exemplar

was observed in a given time window. Therefore, we wish to

estimate,

P (Z) = P (Z1, Z2, . . . , ZM ), (1)

where M =
∑n

i=1 mi is the total number of exemplars in the

map.

As the robot builds the map over time, it records each of

its attempts to localize against the exemplars in the map. This

produces a vector of observations z. We subdivide this set of

all previous observations into two groups

z = zp ∪ zc (2)

zp = [zi : ti 6= t] (3)

zc = [zi : ti = t] (4)



Fig. 3: Illustration of the Chow-Liu tree approximation. The mag-
nitude of mutual information between variables is indicated by line
thickness. The original distribution P (x1, x2, x3, x4) is approximated
as P (x1)P (x3|x1)P (x2|x3)P (x4|x3).

where zp includes all previous measurements observed in a

time window, ti, other than the current, t. Conversely, zc

represents all current observations collected in the current

time window. Our aim then is to learn the joint distribution,

(1), from zp, and then, as the robot moves through the

environment, infer the probability of observing each exemplar

in the current time window given the current observations, zc.

The time window parameter, λ, can be thought of as a lower

bound on the timescale of the map. Two exemplars, Ea and

Eb, are considered co-observed if they were observed within

the same time window ti of length λ. Therefore, our method

learns the temporal correlation only for events with a timescale

greater than λ. In our experiments λ is 1 hour, low enough

to capture changes in lighting throughout the day, but long

enough to exclude short-term dynamics such as people and

moving vehicles.

Unfortunately, as the size of the map increases so will the

number of exemplar views, and estimating the full distribution

with all possible conditional dependencies quickly becomes

intractable. Simply treating the probability of observing each

exemplar as independent would solve the tractability problem.

However, this would prevent any understanding of the tempo-

ral correlation in observability between exemplars. Without

this correlation the most recent observations, zc, will not

provide information about future observations in the same time

window.

As a compromise between tractability and the ability to

capture the temporal correlation between exemplar views, we

have elected to approximate the joint distribution with a Chow-

Liu tree [14]. The Chow-Liu tree approximates the full distri-

bution as the product of pairwise conditional distributions. The

pairwise conditional distributions are selected such that the

Kullback-Leibler divergence between the original distribution

and the Chow-Liu tree approximation is minimized. Therefore,

we can approximate (1) as

P (Z) ≈ P (Zr)

M∏

i=2

P (Zi|Zp(i)) (5)

where Zr is the root variable of the Chow-Liu tree and Zp(i)

is the parent of Zi.

The Chow-Lui tree approximation is constructed by finding

the mutual information between each pair of variables. This

produces a fully connected graph where the weight of each

edge is determined by the mutual information between the

connected variables. From this graph the Chow-Liu tree is

computed by finding the maximum spanning tree (Fig. 3). The

mutual information between two variables is defined as

I(Zi, Zj) =
∑

zi∈0,1

∑

zj∈0,1

P (zi, zj) log
P (zi, zj)

P (zi)P (zj)
. (6)

Therefore, the Chow-Liu approximation can be learned di-

rectly from the previous observation data, zp, by estimating

each marginal distribution and each pairwise joint distribution.

Finding the maximum a posteriori (MAP) estimate of these

quantities amounts to frequency counting based on the number

of times in which each exemplar was observed, and the number

of times in which each pair was successfully co-observed in

the same time window. For the marginal distributions

P̂ (Zi = z) =
N[Zi=z] + (α− 1)

N[Zi] + (α+ β − 2)
, (7)

where N[Zi=z] is the number of observations where Zi = z,

N[Zi] is the number of times Zi was observed either positively

or negatively, and α and β are parameters of a beta prior

that encourages the estimate away from the extremes, 0.0 and

1.0, and toward an empirically determined target mode. In

our experiments the beta prior’s mode was set to 0.2, with

the constraint that α + β = 4. The joint distributions were

estimated as

P̂ (Zi = zi, Zj = zj) =
N[Zi=zi &Zj=zj ] + (α− 1)

N[Zi &Zj ] + (α+ β − 2)
, (8)

where N[Zi=zi &Zj=zj ] is the number of times Zi = zi and

Zj = zj in the same time window, and N[Zi &Zj ] is the

number of times both exemplars were co-observed in the

same time window, regardless of value. In this case the beta

prior parameters are automatically chosen so that the mode

is equal to P̂ (Zi = zi)P̂ (Zj = zj), with the constraint that

α+β = 4. This essentially assumes independence until there is

sufficient data to indicate otherwise. Similarly, the conditional

distributions that form the Chow-Liu tree were estimated as

P̂ (Zi = zi|Zj = zj) =
N[Zi=zi &Zj=zj ] + (α− 1)

N[Zi &Zj=zj ] + (α+ β − 2)
. (9)

Again the beta prior parameters are automatically chosen to

assume independence, with the mode of the prior equal to

P̂ (Zi = zi) with the constraint that α+ β = 4.

It is important to note that the robot may not encounter

all neighborhoods during each time window. Therefore, for

the exemplars within an unvisited neighborhood we have no

evidence of their observability. It is important not to count

this absence of observation as a negative observation. Finally,

the robot may never have attempted to co-observe some pairs

in the same time window. In this case we again assume their

independence with P̂ (zi, zj) = P̂ (zi)P̂ (zj).
When building the Chow-Liu tree we enforce an additional

constraint that no edges should be included between exemplars

within the same neighborhood. This forces the tree to only

include dependencies between neighborhoods. Our focus is to

make predictions between neighborhoods, not within them.



Fig. 4: Depiction of webcam locations at GVSU.

Having learned an approximation of the underlining ob-

servability distribution using observations from all previous

time windows, zp, we now wish to predict the probability

of observing each exemplar given the previous observations

made during the current time window, zc. We can use the sum-

product algorithm [15], [16] to efficiently perform inference

because the joint distribution (1) has been approximated using

a tree structure (5).

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In order to evaluate the proposed algorithm we performed

experiments using data collected at 17 fixed locations over the

course of 116 days (Fig. 4). Data was collected approximately

hourly from March 9th, 2012 through July 3rd, 2012 by au-

tomatically downloading images from web-accessible security

cameras at Grand Valley State University’s campus [17]. The

data includes both indoor and outdoor scenes under dynamic

changes including lighting, weather, people, cars, moving

furniture, seasonal changes and construction. Additionally, for

each set of images the time of day and weather conditions

[18] were automatically recorded for later comparison. This

time and weather meta data was not in any way used by the

algorithm, and was only used after-the-fact as ground-truth to

examine what types of relationships were being learned by the

algorithm.

Considering each of the 17 locations as a metric neighbor-

hood, approximately 1000 simulated robot trajectories were

generated by visiting each neighborhood in a random order.

The time between each synthetic trajectory was also random-

ized uniformly between 1 and 5 hours. In this experiment we

assume that the neighborhood for each view is known. For the

experiment the map was built as follows. The first trajectory

was used to initialize a set of metric neighborhoods, each with

a single visual exemplar view. Each following trajectory was

then processed according to Algorithm 1.

Prior to processing each trajectory, we calculate the Chow-

Liu approximation [14] of the joint distribution of exemplar

Algorithm 1 Experiment Map Update Algorithm

1: Given current map, observation history zp, and new tra-

jectory T consisting of a set of views Vi for 1 = [1 . . . v]
2: // Localization Loop

3: Calculate Chow-Liu approximation of P (Z) using zp

4: for all Views, Vi, in T do

5: Evaluate P (Z|zc) using Sum-Product

6: Predict matching results using P (Z|zc)
7: Visual matching between Vi and exemplars in Ni

8: Update zc with matching results

9: end for

10: // Map Update Loop

11: for all Views, Vi, in T do

12: if no match between Vi and exemplars in Ni then

13: if mi == mmax then

14: Forget least-recently-used exemplar, mi = mi − 1
15: end if

16: Add Vi as new exemplar in Ni, mi = mi + 1
17: end if

18: end for

observations, P (Z). We then consider each view in the tra-

jectory. At each neighborhood, prior to performing matching,

the probability of observing each of the neighborhood’s exem-

plars is estimated given the observations made so far in this

trajectory, P (Z|zc). We then perform visual matching between

the current view and each of the neighborhood’s exemplars in

order to compare the results with the prediction and to add

more observations to zc.

After processing each trajectory, the neighborhoods in the

map are updated using a least-recently-used update rule,

similar in concept but simplified with respect to that proposed

in [1]. In each neighborhood, if the new view does not match

against any of the existing exemplars, then the new view

is added as a new exemplar. If the number of exemplars

in a neighborhood exceeds a threshold (in our experiments

mmax = 9), the exemplar that has been least recently matched

against is removed.

For this experiment a match occurs if the number of inlier

features is greater than 20, and the mean squared reprojection

error is less than 10 pixels. Note that it is possible for the

current view to match more than one exemplar in a neigh-

borhood. The exact definition of a match depends strongly

on the sensing modality and SLAM front-end implementation

used. Matching should be defined by the same criteria used in

determining which constraints are added to the SLAM solution

and in a full implementation may include additional criteria

such as consistency with SLAM-derived motion priors.

B. Prediction Accuracy

Precision-recall and receiver operating characteristic (ROC)

curves for the predicted observability in this experiment are

shown in Fig. 5. These curves are generated by varying the

probability threshold used to predict if an exemplar will be

observable. Ground-truth is known as matching was performed



(a) Precision-Recall Curve

(b) ROC Curve

Fig. 5: Precision-recall curve and ROC curve for observability pre-
diction. Results for all predictions made throughout the experiments
are shown in red and labeled “Full.” Results that exclude predictions
made on newly added exemplars (less than 2 days old), and predic-
tions made with a small number of current observations (less than
4 neighborhoods observed), are shown in blue and labeled “Subset.”
Results that consider all predictions, but only use training data from
the top two most likely and two randomly chosen “test” exemplars,
are shown in green and labeled “Trade Off.” AUC indicates the area
under the curve.

after the prediction to verify the results. It is interesting

to note that there are two situations that occur during the

experiment where one would not expect the algorithm to

perform well. The first occurs when a new exemplar is added

to the map. The estimated probabilities for new exemplars

with few observations are based largely on beta priors that

assume independence from other exemplars. Therefore, we do

not expect the algorithm to accurately predict the observability

of exemplars until sufficient observations have been made to

estimate the inter-exemplar correlation. The second occurs

at the start of each trajectory where, before any current

observations have been made, the predictions are based on

the learned probabilities of observation for each exemplar.

For comparison in Fig. 5, curves are shown for all pre-

dictions made throughout the experiment, shown in red and

labeled “Full,” and for a subset that excludes predictions made

under the aforementioned conditions where less observation

data is available, shown in blue and labeled “Subset.” As

one would expect, excluding the predictions made with few

observations improves performance. More interestingly, this

(a) Night Outdoors (+) (b) Night: Outdoors and Indoors (+)

(c) Day Outdoors (+) (d) Dusk Outdoors (+)

(e) Night / Day (–) (f) Wet / Rain (+)

Fig. 6: Sample exemplar pairs with high positive or negative cor-
relation that were included in the Chow-Liu tree approximation.
Sign between pairs indicates sign of correlation. These pairs are
representative of the types of relationships automatically found in
the Chow-Liu approximation.

illustrates the interaction between the proposed observation

prediction algorithm and the exemplar updating scheme. Ex-

emplar updating schemes that quickly settle to a stable set

of exemplars per neighborhood are ideal, while update rules

that continuously add new and forget old exemplars will be

detrimental.

It is important to note that there is an inherent trade-off

between reducing the data association effort and producing

more data to learn the Chow-Liu approximation. In the “Full”

and “Subset” experiments, visual matching was performed

between the current view and each exemplar in the neighbor-

hood regardless of the predicted probability of observation.

All of these observations were then provided to subsequent

predictions. Therefore, there was no gain in terms of the

effort required for data association. To investigate this trade-

off, an experiment was performed in which the match data

from only the top two most likely and two randomly chosen

“test” exemplars were used to train the Chow-Liu tree and

to perform inference. These results are shown in green and

labeled “Trade Off” in Fig. 5. As only a maximum of four

exemplars are tested per neighborhood, this represents a data

association effort reduction of greater than 50% at steady-state

(when each neighborhood has reached its maximum of nine

exemplars).

C. Learned Temporal Relationships

In order to visualize the type of co-observability relation-

ships being learned by the Chow-Liu approximation several

representative examples of highly correlated exemplar pairs

(from different neighborhoods) that were learned by the Chow-

Liu tree approximation are depicted in Fig. 6. It appears



Fig. 7: Sample imagery for ML exemplars for 7 not-yet-observed neighborhoods (1,2,3,7,8,9,13) as other neighborhoods in the map are
observed (5,12,14,16,17). The upper right shows the first 5 observations (in order from left to right) made during this trajectory. In the grid
below, the first row shows the true realization of each of the neighborhoods, which have yet to be observed. The remaining rows show the
maximum likelihood exemplars after the first 0, 1, 3, and 5 neighborhoods are observed (0 being the prior). Red boxes highlight exemplars
that have changed given the new observations for that row.

(a) Neighborhood 11 (b) Neighborhood 6

Fig. 8: Sample imagery showing the nine exemplars from two not-yet-observed neighborhoods. To the left of the exemplars the true realization
of each of the neighborhoods is shown. The ML exemplars after 0, 1, 2, and 5 other neighborhoods are observed (0 being the prior) are
highlighted with green boxes.



that the structure of Chow-Liu tree is driven primarily by

lighting variation, with weather and sky conditions playing a

much smaller role. Many of the strongest positive correlations

were found between night exemplars, most likely due to the

consistent artificial lighting in these scenes and their complete

visual dissimilarity with daytime exemplars. Almost all cases

of negative correlation were between day and night exemplars.

The imagery in Fig. 7 and in Fig. 8 shows examples of

how the ML exemplars for several sample neighborhoods

change as new observations are made. With no observations

the ML exemplars are based on the learned prior probability

of observation and in this example contain a mixture of night

and day exemplars. After observing the first neighborhood,

the night exemplars are replaced with daytime exemplars. As

more neighborhoods are observed, the ML exemplars change

more subtly toward less sunny exemplars, which better match

the true realization.

For illustration purposes, Fig. 7 shows the ML exemplars

for multiple neighborhoods at the same time. However, during

the actual experiment the ML exemplar for each neighborhood

is only calculated immediately before attempting to match

exemplars in that neighborhood, and the liklihood is maxi-

mized only locally over the exemplars in that neighborhood.

To truly estimate a maximum likelihood map over multiple

neighborhoods, it would be more appropriate to use the max-

product algorithm [16] instead of the sum-product to find the

set of exemplars that jointly maximize the likelihood.

The temporal changes learned in the Chow-Liu approxi-

mation are further illustrated in Fig. 9. By considering all

observations that meet a specific time-of-day condition, we

can calculate the ratios of the time-of-day conditions of the

successfully matched exemplars for these observations. As one

would expect, we see in Fig. 9(a) that visual matching is

dependent on lighting conditions, which change throughout the

day. Observations are more likely to match against exemplars

collected under similar time-of-day conditions. At no time

does the proposed algorithm use any external information

about the time of day, yet it effects visual matching; we

would like the algorithm to propose appropriate exemplars,

following the relationships in Fig. 9(a). In Fig. 9(b) we see

that this is the case. The ratios of conditions of the predicted

ML exemplars closely match those in Fig. 9(a) indicating

that the algorithm has learned the underlying co-observability

relationships caused by changes in lighting. For observations

made during the morning, midday, afternoon and night, our

algorithm learns to propose exemplars from the appropriate

time of day.

Similarly, in Fig. 9(c) we see that the current sky condition

also effects visual matching, though to a lesser extent than

the time-of-day. Fig. 9(d) indicates our algorithm learns to

predict exemplars according to the underlying co-observability

relationships caused by changes between clear and overcast

skies.

Again it is important to note, that the algorithm does not use

any external knowledge of lighting or weather conditions, and

that correlation between the observability of exemplars could

(a) (b)

(c) (d)

Fig. 9: Comparison between the conditions of the matched exemplars
and the ML exemplars for a given observation condition. In (a) and
(b) each row corresponds to the set of observations that occurred at
a specific time of day. The shade of each cell represents the ratio of
exemplars from that time of day, where white is 0.0 and black is 1.0.
Similarly, in (c) and (d) exemplars collected under clear and overcast
sky conditions are compared.

be developed by many different types of dynamic changes that

affect visual matching.

V. DISCUSSION AND FUTURE WORK

There are several important aspects to consider with respect

to the applicability and utility of the proposed algorithm:

• There is an inherent trade-off between the data associa-

tion effort and producing more data to learn the Chow-Liu

approximation. The more attempts made to match against

exemplars, the more accurate the predictions become.

However, the fewer the matching attempts, the larger the

reduction in data association effort.

• Once built, performing inference using the Chow-Liu

approximation is very efficient due to its tree structure.

Unfortunately, building the Chow-Liu approximation it-

self is computationally expensive (i.e., O(M2 logM)
where M is the number of exemplars).

• One might argue that using data association methods

based on fast bag-of-words (BoW) place recognition

techniques [19]–[21], as demonstrated in [1], reduces the

cost of producing data association hypotheses sufficiently

such that it is not computationally necessary to predict

which exemplars will be observed. Instead, one can

simply consider all exemplars at every data association

attempt.



Fig. 10: Illustration of a centralized multi-agent system. In this sce-
nario a common map is shared between many agents. The centralized
map provides the current Chow-Liu approximation, ML exemplars,
and possibly additional test exemplars to the localizing agents. The
localizing agents return match results and possible new exemplars.
Updating the Chow-Liu approximation and performing map updates
are carried out as offline batch processes.

Based on these concerns we understand that the present

algorithm may not seem practical for online, single-agent,

map building. It is our belief, though, that if we consider

a centralized multi-agent scenario, where a common map

is shared between many agents (Fig. 10), then the proposed

algorithm could provide substantial benefits:

• By sharing a map between multiple agents the burden of

testing exemplar observability can be spread out among

all agents while improving the reduction in data associa-

tion effort.

• Building the Chow-Liu approximation can be done as

a batch offline process and the result transferred to all

agents where it can be used for efficient inference.

• Being able to predict the ML exemplars allows only a

small subset of exemplars to be transferred between the

centralized map and the individual agents.

Much work remains to fully demonstrate the effectiveness of

the proposed algorithm. Most importantly, we intend to apply

it to a large-scale real-world robotic data set. Additionally,

exploring methods to balance the trade-off between data

association effort and training data production, such as actively

selecting test exemplars, and exploring the interaction between

exemplar update rules and the ability to predict exemplar

observability, could also improve the algorithm further.

VI. CONCLUSIONS

We presented a method that learns the temporal observabil-

ity relationships between views of a dynamic environment.

We have demonstrated that these relationships can be used

to predict which views of the environment will be observed

by the robot given what the robot has recently observed. We

have demonstrated that the learned relationships can encode

many different types of temporal changes, without explicitly

modeling them, including changes in lighting due to time of

day and weather.
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