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Fig. 1: Illustration of an “exemplar” based map representation. Locations are modeled as “metric” neighborhoods,N i for i = [1 : : : n].
The visual appearance of each neighborhood is represented by a set of exemplar views,E i

j for j = [1 : : : m i ], which seek to represent
the possible variation in appearance of a location due to temporal changes in the environment.Our proposed method learns the
temporal observability relationships between exemplars allowing one to predict which exemplars will be observed based on recent
measurements.The temporal observability relationships are illustrated as red links with the sign indicating the sign of the correlation.

Abstract—This paper reports on a method that learns the tem-
poral co-observability relationships for exemplar views of a dy-
namic environment collected during long-term robotic mapping.
These relationships are ef�ciently captured using a Chow-Liu tree
approximation and allow one to predict which exemplars will be
observed by the robot given the robot's recent observations. For
example, these learned relationships can encode scene dependent
changes in lighting due to time of day and weather, without
explicitly modeling them. Preliminary experimental results are
shown using images from 17 �xed locations collected hourly over
the course of 116 days.

I. I NTRODUCTION

Recent work has sought to address the challenge of robotic
simultaneous localization and mapping (SLAM) in dynamic
environments by using a map representation that encodes both
spatial and temporal information. Promising examples of these
methods elect to represent locations in the map as a collection
of views [1], environmental states [2], or view sequences [3],
corresponding to how the environment appeared at various
observation instances. These “exemplar” based methods are
capable of representing many different types of temporal
variation. It is our opinion that these methods provide a
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promising way forward toward developing SLAM systems for
long-term autonomy in dynamic environments.

Current methods do not attempt to understand the temporal
relationship between map exemplars. Data association is per-
formed by comparing the current sensor measurement against
all possible exemplars to determine which best explains the
current measurement. Essentially, the robot considers all pos-
sible temporal variations of a location every time it attempts to
measure the environment. This results in a map that grows both
with spatial extent and with the amount of dynamic variation
in the environment.

In this paper we present a method that learns the temporal
observability relationships between exemplars in the map.
These relationships can be used to predict which exemplars
will be observed given what the robot has recently observed.
Conceptually this can be thought of as producing a maximum
likelihood (ML) temporal map.

The learned relationships encode many different types of
temporal changes, without explicitly modeling them. For ex-
ample, the proposed method learns groupings of exemplars
caused by changes in lighting between morning, noon, and
night, even though the time of day is not a modeled input
to the system. The structure of the correlation learned by
the proposed method is determined by the properties of the
sensor system. In the case of vision the correlation structure
is primarily de�ned by changes in lighting. This would not
be true in the case of light detection and ranging (LIDAR),
which is invariant to changes in illumination and would be
more affected by changes in geometric structure and occlusion.

Our motivation for this work is a centralized multi-agent
system in which a common map is shared between many



agents. We advocate in Section V that the proposed algorithm
is particularly well suited for this scenario. The remainder
of the paper is outlined as follows. In Section II we review
related work. The proposed method is described in Section III.
Finally, our experimental results are presented and discussed
in Sections IV and V, respectively. Section VI concludes.

II. RELATED WORK

The majority of SLAM solutions, to date, make the as-
sumption that the environment is static. For many robotic
applications this assumption is not extremely detrimental. This
is especially true for systems that exploit robust data associ-
ation methods, notably image and laser range registration, as
these methods are capable of successful measurements in the
presence of short-term dynamic effects, such as partial scene
occlusion and moving objects.

Several methods have been proposed that try to �lter out
dynamic elements of the environment while maintaining the
assumption that the underlying environment is static, for
example [4]–[7], among others. It has also been shown that it
is possible to explicitly identify and track speci�c classes of
dynamic objects in the environment such as people [8].

Recently, several works have proposed methods that explic-
itly model dynamic changes in the map. In [9], [10], Biber and
Duckett represent the environment by a collection of sample-
based maps, each of which incorporates new samples and
forgets old samples at a different rate. This rate determines
the timescale of each map. During localization the robot tests
all timescales to determine which best agrees with the current
observation and then performs measurement updates against
that map. In some respects this representation is similar to
the exemplar-based methods that this paper expands upon, as
each map could be thought of as a type of exemplar. They are
not exactly equivalent though, due to the fact that in this case
each timescale-sampled map is a collection of data measured
at multiple instances in time, and not a collection of a single-
time-instance example views of the environment. The idea of
sample-based maps is continued by Dayoub and Duckett in
[11], which uses a short-term versus long-term memory model
to update the collection of visual features that represent the
appearance of a location. In [12] a method is presented which
uses a “dynamic occupancy grid” based on a hidden Markov
model to capture dynamic changes in the environment.

The works most relevant to our proposed method can
be considered as “exemplar-based” methods [1]–[3]. In [2]
Stachniss and Burgard propose a method to learn exemplar
con�gurations of an indoor environment from 2D laser scan
data using fuzzy k-means clustering. They then use these
exemplar con�gurations in a particle-�lter based localization
framework. Konolige and Bowman present a vision-based
method in [1]. This method works within the context of vision
based pose-graph SLAM [13], where the pose-graph is divided
into metric neighborhoods of views bounded by physical
location and view attitude. Within these neighborhoods each
view is an example of how the environment looked at the time
it was collected. They then present a least-recently-used view

deletion algorithm, which limits the number of exemplars per
neighborhood to a �xed number and encourages a long-term
equilibrium with the minimum set of exemplars that explains
the visual variation of that neighborhood. In [3], Churchill and
Newman use sequences of views, termed “experiences”, as the
basic unit of the temporal map instead of individual views.
New experiences are added to the map when the existing
experiences are unable to explain the current observations.

The map representation used in this paper, including the idea
of exemplars and their use in metric neighborhoods, was �rst
introduced in [1]. Our contribution beyond existing exemplar-
based methods, [1]–[3], is an algorithm to learn the temporal
observability relationships between exemplars throughout the
map. This allows one topredict which exemplar within a yet
unseen neighborhood is most likely to be observedgiven the
most recent exemplar observations from other neighborhoods,
which avoids having to compare the robot's current view
against all exemplars at each neighborhood.

III. L EARNING TEMPORAL OBSERVABILITY

RELATIONSHIPSBETWEEN EXEMPLARS

The proposed algorithm uses a map representation that
models each location as a “spatial” or “metric” neighborhood,
N i for i = [1 : : : n]. Each neighborhood represents a physical
space in the environment. The nature of this space is de�ned by
the choice of sensing modality so that measurements within the
neighborhood should overlap suf�ciently for registration. For
example, in the case of omnidirectional vision or 2D LIDAR
a neighborhood may be de�ned as a max translation between
any two views. For monocular vision, one would also need
to include the vantage point of the camera. The appearance,
geometric shape, or state of each neighborhood is represented
by a set of “exemplar” views,E i

j for j = [1 : : : mi ], which seek
to represent the possible variation in appearance or structure
of a location due to temporal changes in the environment, as
illustrated in Fig. 1.

In order to learn the temporal observability relationships
between map exemplars, and to predict the observability of
each exemplar in the map, we wish to estimate the joint
distribution of the probability that each exemplar will be
observed during a given time window of length� . Let Zk

be a binary random variable representing if thekth exemplar
was observed in a given time window. Therefore, we wish to
estimate,

P(Z) = P(Z1; Z2; : : : ; ZM ); (1)

whereM =
P n

i =1 mi is the total number of exemplars in the
map.

As the robot builds the map over time, it records each of
its attempts to localize against the exemplars in the map. This
produces a vector of observationsz. We subdivide this set of
all previous observations into two groups

z = zp [ zc (2)

zp = [ zi : t i 6= t] (3)

zc = [ zi : t i = t] (4)



Fig. 3: Illustration of the Chow-Liu tree approximation. The mag-
nitude of mutual information between variables is indicated by line
thickness. The original distributionP(x1 ; x2 ; x3 ; x4) is approximated
asP(x1)P (x3 jx1)P (x2 jx3)P (x4 jx3).

where zp includes all previous measurements observed in a
time window, t i , other than the current,t. Conversely,zc

represents all current observations collected in the current
time window. Our aim then is to learn the joint distribution,
(1), from zp, and then, as the robot moves through the
environment, infer the probability of observing each exemplar
in the current time window given the current observations,zc.

The time window parameter,� , can be thought of as a lower
bound on the timescale of the map. Two exemplars,Ea and
Eb, are considered co-observed if they were observed within
the same time windowt i of length � . Therefore, our method
learns the temporal correlation only for events with a timescale
greater than� . In our experiments� is 1 hour, low enough
to capture changes in lighting throughout the day, but long
enough to exclude short-term dynamics such as people and
moving vehicles.

Unfortunately, as the size of the map increases so will the
number of exemplar views, and estimating the full distribution
with all possible conditional dependencies quickly becomes
intractable. Simply treating the probability of observing each
exemplar as independent would solve the tractability problem.
However, this would prevent any understanding of the tempo-
ral correlation in observability between exemplars. Without
this correlation the most recent observations,zc, will not
provide information about future observations in the same time
window.

As a compromise between tractability and the ability to
capture the temporal correlation between exemplar views, we
have elected to approximate the joint distribution with a Chow-
Liu tree [14]. The Chow-Liu tree approximates the full distri-
bution as the product of pairwise conditional distributions. The
pairwise conditional distributions are selected such that the
Kullback-Leibler divergence between the original distribution
and the Chow-Liu tree approximation is minimized. Therefore,
we can approximate (1) as

P(Z) � P(Z r )
MY

i =2

P(Z i jZp( i ) ) (5)

whereZ r is the root variable of the Chow-Liu tree andZp( i )

is the parent ofZ i .
The Chow-Lui tree approximation is constructed by �nding

the mutual information between each pair of variables. This
produces a fully connected graph where the weight of each
edge is determined by the mutual information between the

connected variables. From this graph the Chow-Liu tree is
computed by �nding the maximum spanning tree (Fig. 3). The
mutual information between two variables is de�ned as

I (Z i ; Z j ) =
X

zi 2 0;1

X

zj 2 0;1

P(zi ; zj ) log
P(zi ; zj )

P(zi )P(zj )
: (6)

Therefore, the Chow-Liu approximation can be learned di-
rectly from the previous observation data,zp, by estimating
each marginal distribution and each pairwise joint distribution.

Finding the maximuma posteriori(MAP) estimate of these
quantities amounts to frequency counting based on the number
of times in which each exemplar was observed, and the number
of times in which each pair was successfully co-observed in
the same time window. For the marginal distributions

P̂ (Z i = z) =
N [Z i = z] + ( � � 1)

N [Z i ] + ( � + � � 2)
; (7)

whereN [Z i = z] is the number of observations whereZ i = z,
N [Z i ] is the number of timesZ i was observed either positively
or negatively, and� and � are parameters of a beta prior
that encourages the estimate away from the extremes,0:0 and
1:0, and toward an empirically determined target mode. In
our experiments the beta prior's mode was set to0:2, with
the constraint that� + � = 4 . The joint distributions were
estimated as

P̂ (Z i = zi ; Z j = zj ) =
N [Z i = zi & Z j = zj ] + ( � � 1)

N [Z i & Z j ] + ( � + � � 2)
; (8)

whereN [Z i = zi & Z j = zj ] is the number of timesZ i = zi and
Z j = zj in the same time window, andN [Z i & Z j ] is the
number of times both exemplars were co-observed in the
same time window, regardless of value. In this case the beta
prior parameters are automatically chosen so that the mode
is equal toP̂ (Z i = zi )P̂ (Z j = zj ), with the constraint that
� + � = 4 . This essentially assumes independence until there is
suf�cient data to indicate otherwise. Similarly, the conditional
distributions that form the Chow-Liu tree were estimated as

P̂(Z i = zi jZ j = zj ) =
N [Z i = zi & Z j = zj ] + ( � � 1)

N [Z i & Z j = zj ] + ( � + � � 2)
: (9)

Again the beta prior parameters are automatically chosen to
assume independence, with the mode of the prior equal to
P̂ (Z i = zi ) with the constraint that� + � = 4 .

It is important to note that the robot may not encounter
all neighborhoods during each time window. Therefore, for
the exemplars within an unvisited neighborhood we have no
evidence of their observability. It is important not to count
this absence of observation as a negative observation. Finally,
the robot may never have attempted to co-observe some pairs
in the same time window. In this case we again assume their
independence witĥP(zi ; zj ) = P̂ (zi )P̂ (zj ).

When building the Chow-Liu tree we enforce an additional
constraint that no edges should be included between exemplars
within the same neighborhood. This forces the tree to only
include dependencies between neighborhoods. Our focus is to
make predictions between neighborhoods, not within them.



Fig. 4: Depiction of webcam locations at GVSU.

Having learned an approximation of the underlining ob-
servability distribution using observations from all previous
time windows,zp, we now wish to predict the probability
of observing each exemplar given the previous observations
made during the current time window,zc. We can use the sum-
product algorithm [15], [16] to ef�ciently perform inference
because the joint distribution (1) has been approximated using
a tree structure (5).

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In order to evaluate the proposed algorithm we performed
experiments using data collected at 17 �xed locations over the
course of 116 days (Fig. 4). Data was collected approximately
hourly from March 9th, 2012 through July 3rd, 2012 by au-
tomatically downloading images from web-accessible security
cameras at Grand Valley State University's campus [17]. The
data includes both indoor and outdoor scenes under dynamic
changes including lighting, weather, people, cars, moving
furniture, seasonal changes and construction. Additionally, for
each set of images the time of day and weather conditions
[18] were automatically recorded for later comparison. This
time and weather meta data was not in any way used by the
algorithm, and was only used after-the-fact as ground-truth to
examine what types of relationships were being learned by the
algorithm.

Considering each of the 17 locations as a metric neighbor-
hood, approximately 1000 simulated robot trajectories were
generated by visiting each neighborhood in a random order.
The time between each synthetic trajectory was also random-
ized uniformly between 1 and 5 hours. In this experiment we
assume that the neighborhood for each view is known. For the
experiment the map was built as follows. The �rst trajectory
was used to initialize a set of metric neighborhoods, each with
a single visual exemplar view. Each following trajectory was
then processed according to Algorithm 1.

Prior to processing each trajectory, we calculate the Chow-
Liu approximation [14] of the joint distribution of exemplar

Algorithm 1 Experiment Map Update Algorithm

1: Given current map, observation historyzp, and new tra-
jectory T consisting of a set of viewsVi for 1 = [1 : : : v]

2: // Localization Loop
3: Calculate Chow-Liu approximation ofP(Z) usingzp

4: for all Views, Vi , in T do
5: EvaluateP(Zjzc) using Sum-Product
6: Predict matching results usingP(Zjzc)
7: Visual matching betweenVi and exemplars inN i

8: Updatezc with matching results
9: end for

10: // Map Update Loop
11: for all Views, Vi , in T do
12: if no match betweenVi and exemplars inN i then
13: if mi == mmax then
14: Forget least-recently-used exemplar,mi = mi � 1
15: end if
16: Add Vi as new exemplar inN i , mi = mi + 1
17: end if
18: end for

observations,P(Z). We then consider each view in the tra-
jectory. At each neighborhood, prior to performing matching,
the probability of observing each of the neighborhood's exem-
plars is estimated given the observations made so far in this
trajectory,P(Zjzc). We then perform visual matching between
the current view and each of the neighborhood's exemplars in
order to compare the results with the prediction and to add
more observations tozc.

After processing each trajectory, the neighborhoods in the
map are updated using a least-recently-used update rule,
similar in concept but simpli�ed with respect to that proposed
in [1]. In each neighborhood, if the new view does not match
against any of the existing exemplars, then the new view
is added as a new exemplar. If the number of exemplars
in a neighborhood exceeds a threshold (in our experiments
mmax = 9 ), the exemplar that has been least recently matched
against is removed.

For this experiment a match occurs if the number of inlier
features is greater than 20, and the mean squared reprojection
error is less than 10 pixels. Note that it is possible for the
current view to match more than one exemplar in a neigh-
borhood. The exact de�nition of a match depends strongly
on the sensing modality and SLAM front-end implementation
used. Matching should be de�ned by the same criteria used in
determining which constraints are added to the SLAM solution
and in a full implementation may include additional criteria
such as consistency with SLAM-derived motion priors.

B. Prediction Accuracy

Precision-recall and receiver operating characteristic (ROC)
curves for the predicted observability in this experiment are
shown in Fig. 5. These curves are generated by varying the
probability threshold used to predict if an exemplar will be
observable. Ground-truth is known as matching was performed



(a) Precision-Recall Curve

(b) ROC Curve

Fig. 5: Precision-recall curve and ROC curve for observability pre-
diction. Results for all predictions made throughout the experiments
are shown in red and labeled “Full.” Results that exclude predictions
made on newly added exemplars (less than 2 days old), and predic-
tions made with a small number of current observations (less than
4 neighborhoods observed), are shown in blue and labeled “Subset.”
Results that consider all predictions, but only use training data from
the top two most likely and two randomly chosen “test” exemplars,
are shown in green and labeled “Trade Off.” AUC indicates the area
under the curve.

after the prediction to verify the results. It is interesting
to note that there are two situations that occur during the
experiment where one would not expect the algorithm to
perform well. The �rst occurs when a new exemplar is added
to the map. The estimated probabilities for new exemplars
with few observations are based largely on beta priors that
assume independence from other exemplars. Therefore, we do
not expect the algorithm to accurately predict the observability
of exemplars until suf�cient observations have been made to
estimate the inter-exemplar correlation. The second occurs
at the start of each trajectory where, before any current
observations have been made, the predictions are based on
the learned probabilities of observation for each exemplar.

For comparison in Fig. 5, curves are shown for all pre-
dictions made throughout the experiment, shown in red and
labeled “Full,” and for a subset that excludes predictions made
under the aforementioned conditions where less observation
data is available, shown in blue and labeled “Subset.” As
one would expect, excluding the predictions made with few
observations improves performance. More interestingly, this

(a) Night Outdoors (+) (b) Night: Outdoors and Indoors (+)

(c) Day Outdoors (+) (d) Dusk Outdoors (+)

(e) Night / Day (–) (f) Wet / Rain (+)

Fig. 6: Sample exemplar pairs with high positive or negative cor-
relation that were included in the Chow-Liu tree approximation.
Sign between pairs indicates sign of correlation. These pairs are
representative of the types of relationships automatically found in
the Chow-Liu approximation.

illustrates the interaction between the proposed observation
prediction algorithm and the exemplar updating scheme. Ex-
emplar updating schemes that quickly settle to a stable set
of exemplars per neighborhood are ideal, while update rules
that continuously add new and forget old exemplars will be
detrimental.

It is important to note that there is an inherent trade-off
between reducing the data association effort and producing
more data to learn the Chow-Liu approximation. In the “Full”
and “Subset” experiments, visual matching was performed
between the current view and each exemplar in the neighbor-
hood regardless of the predicted probability of observation.
All of these observations were then provided to subsequent
predictions. Therefore, there was no gain in terms of the
effort required for data association. To investigate this trade-
off, an experiment was performed in which the match data
from only the top two most likely and two randomly chosen
“test” exemplars were used to train the Chow-Liu tree and
to perform inference. These results are shown in green and
labeled “Trade Off” in Fig. 5. As only a maximum of four
exemplars are tested per neighborhood, this represents a data
association effort reduction of greater than50%at steady-state
(when each neighborhood has reached its maximum of nine
exemplars).

C. Learned Temporal Relationships

In order to visualize the type of co-observability relation-
ships being learned by the Chow-Liu approximation several
representative examples of highly correlated exemplar pairs
(from different neighborhoods) that were learned by the Chow-
Liu tree approximation are depicted in Fig. 6. It appears



Fig. 7: Sample imagery for ML exemplars for 7 not-yet-observed neighborhoods (1,2,3,7,8,9,13) as other neighborhoods in the map are
observed (5,12,14,16,17). The upper right shows the �rst 5 observations (in order from left to right) made during this trajectory. In the grid
below, the �rst row shows the true realization of each of the neighborhoods, which have yet to be observed. The remaining rows show the
maximum likelihood exemplars after the �rst 0, 1, 3, and 5 neighborhoods are observed (0 being the prior). Red boxes highlight exemplars
that have changed given the new observations for that row.

(a) Neighborhood 11 (b) Neighborhood 6

Fig. 8: Sample imagery showing the nine exemplars from two not-yet-observed neighborhoods. To the left of the exemplars the true realization
of each of the neighborhoods is shown. The ML exemplars after 0, 1, 2, and 5 other neighborhoods are observed (0 being the prior) are
highlighted with green boxes.



that the structure of Chow-Liu tree is driven primarily by
lighting variation, with weather and sky conditions playing a
much smaller role. Many of the strongest positive correlations
were found between night exemplars, most likely due to the
consistent arti�cial lighting in these scenes and their complete
visual dissimilarity with daytime exemplars. Almost all cases
of negative correlation were between day and night exemplars.

The imagery in Fig. 7 and in Fig. 8 shows examples of
how the ML exemplars for several sample neighborhoods
change as new observations are made. With no observations
the ML exemplars are based on the learned prior probability
of observation and in this example contain a mixture of night
and day exemplars. After observing the �rst neighborhood,
the night exemplars are replaced with daytime exemplars. As
more neighborhoods are observed, the ML exemplars change
more subtly toward less sunny exemplars, which better match
the true realization.

For illustration purposes, Fig. 7 shows the ML exemplars
for multiple neighborhoods at the same time. However, during
the actual experiment the ML exemplar for each neighborhood
is only calculated immediately before attempting to match
exemplars in that neighborhood, and the liklihood is maxi-
mized only locally over the exemplars in that neighborhood.
To truly estimate a maximum likelihood map over multiple
neighborhoods, it would be more appropriate to use the max-
product algorithm [16] instead of the sum-product to �nd the
set of exemplars thatjointly maximize the likelihood.

The temporal changes learned in the Chow-Liu approxi-
mation are further illustrated in Fig. 9. By considering all
observations that meet a speci�c time-of-day condition, we
can calculate the ratios of the time-of-day conditions of the
successfully matched exemplars for these observations. As one
would expect, we see in Fig. 9(a) that visual matching is
dependent on lighting conditions, which change throughout the
day. Observations are more likely to match against exemplars
collected under similar time-of-day conditions. At no time
does the proposed algorithm use any external information
about the time of day, yet it effects visual matching; we
would like the algorithm to propose appropriate exemplars,
following the relationships in Fig. 9(a). In Fig. 9(b) we see
that this is the case. The ratios of conditions of the predicted
ML exemplars closely match those in Fig. 9(a) indicating
that the algorithm has learned the underlying co-observability
relationships caused by changes in lighting. For observations
made during the morning, midday, afternoon and night, our
algorithm learns to propose exemplars from the appropriate
time of day.

Similarly, in Fig. 9(c) we see that the current sky condition
also effects visual matching, though to a lesser extent than
the time-of-day. Fig. 9(d) indicates our algorithm learns to
predict exemplars according to the underlying co-observability
relationships caused by changes between clear and overcast
skies.

Again it is important to note, that the algorithm does not use
any external knowledge of lighting or weather conditions, and
that correlation between the observability of exemplars could

(a) (b)

(c) (d)

Fig. 9: Comparison between the conditions of the matched exemplars
and the ML exemplars for a given observation condition. In (a) and
(b) each row corresponds to the set of observations that occurred at
a speci�c time of day. The shade of each cell represents the ratio of
exemplars from that time of day, where white is 0.0 and black is 1.0.
Similarly, in (c) and (d) exemplars collected under clear and overcast
sky conditions are compared.

be developed by many different types of dynamic changes that
affect visual matching.

V. D ISCUSSION ANDFUTURE WORK

There are several important aspects to consider with respect
to the applicability and utility of the proposed algorithm:

� There is an inherent trade-off between the data associa-
tion effort and producing more data to learn the Chow-Liu
approximation. The more attempts made to match against
exemplars, the more accurate the predictions become.
However, the fewer the matching attempts, the larger the
reduction in data association effort.

� Once built, performing inference using the Chow-Liu
approximation is very ef�cient due to its tree structure.
Unfortunately, building the Chow-Liu approximation it-
self is computationally expensive (i.e.,O(M 2 logM )
whereM is the number of exemplars).

� One might argue that using data association methods
based on fast bag-of-words (BoW) place recognition
techniques [19]–[21], as demonstrated in [1], reduces the
cost of producing data association hypotheses suf�ciently
such that it is not computationally necessary to predict
which exemplars will be observed. Instead, one can
simply consider all exemplars at every data association
attempt.



Fig. 10: Illustration of a centralized multi-agent system. In this sce-
nario a common map is shared between many agents. The centralized
map provides the current Chow-Liu approximation, ML exemplars,
and possibly additional test exemplars to the localizing agents. The
localizing agents return match results and possible new exemplars.
Updating the Chow-Liu approximation and performing map updates
are carried out as of�ine batch processes.

Based on these concerns we understand that the present
algorithm may not seem practical for online, single-agent,
map building. It is our belief, though, that if we consider
a centralized multi-agent scenario, where a common map
is shared between many agents (Fig. 10), then the proposed
algorithm could provide substantial bene�ts:

� By sharing a map between multiple agents the burden of
testing exemplar observability can be spread out among
all agents while improving the reduction in data associa-
tion effort.

� Building the Chow-Liu approximation can be done as
a batch of�ine process and the result transferred to all
agents where it can be used for ef�cient inference.

� Being able to predict the ML exemplars allows only a
small subset of exemplars to be transferred between the
centralized map and the individual agents.

Much work remains to fully demonstrate the effectiveness of
the proposed algorithm. Most importantly, we intend to apply
it to a large-scale real-world robotic data set. Additionally,
exploring methods to balance the trade-off between data
association effort and training data production, such as actively
selecting test exemplars, and exploring the interaction between
exemplar update rules and the ability to predict exemplar
observability, could also improve the algorithm further.

VI. CONCLUSIONS

We presented a method that learns the temporal observabil-
ity relationships between views of a dynamic environment.

We have demonstrated that these relationships can be used
to predict which views of the environment will be observed
by the robot given what the robot has recently observed. We
have demonstrated that the learned relationships can encode
many different types of temporal changes, without explicitly
modeling them, including changes in lighting due to time of
day and weather.
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