
Initial Results in Underwater Single Image

Dehazing

Nicholas Carlevaris-Bianco∗, Anush Mohan∗, Ryan M. Eustice†

Department of Electrical Engineering and Computer Science∗

Department of Naval Architecture and Marine Engineering†

University of Michigan, Ann Arbor, Michigan 48109

Email: {carlevar,anushm,eustice}@umich.edu

Abstract—As light is transmitted from subject to observer it
is absorbed and scattered by the medium it passes through. In
mediums with large suspended particles, such as fog or turbid
water, the effect of scattering can drastically decrease the quality
of images. In this paper we present an algorithm for removing the
effects of light scattering, referred to as dehazing, in underwater
images. Our key contribution is to propose a simple, yet effective,
prior that exploits the strong difference in attenuation between
the three image color channels in water to estimate the depth
of the scene. We then use this estimate to reduce the spatially
varying effect of haze in the image. Our method works with a
single image and does not require any specialized hardware or
prior knowledge of the scene. As a by-product of the dehazing
process, an up-to-scale depth map of the scene is produced. We
present results over multiple real underwater images and over a
controlled test set where the target distance and true colors are
known.

I. INTRODUCTION

Poor visibility due to haze can severely degrade the quality

of an image. In outdoor and underwater images, the light

reflected from the subject and ambient light in the medium, re-

ferred to as the airlight, are absorbed and scattered by particles

in the medium before they reach the camera. Depending on

the density and size of the suspended particles, this can result

in severely degraded images. Dehazing serves to improve the

aesthetic quality of images as well as to improve data quality

for scientific data collection and computer vision applications.

Our aim in this paper is to explore single image dehazing

techniques for underwater images (Fig. 1). While a number of

single image dehazing methods have shown good performance

in outdoor images, much remains to be said about the success

of these techniques for underwater images. We present a

method for single image dehazing specifically designed for

underwater images. Our main contribution is the proposal of a

depth prior that exploits the wavelength-dependent attenuation

of light in water to estimate the depth of a scene from a single

image.

A. Optical Model

The image captured by a camera can be modeled as being

composed of two components: the direct transmission of light

from the object and the transmission due to scattering by

the particles of the medium, referred to here as the airlight.

Mathematically, this can be written as [1, 2]:

I (x) = J (x) t (x) + (1− t (x))A (1)

where x = (x, y) is a pixel, I (x) is the observed image

intensity, J (x) is the scene radiance, A is the airlight and

t (x) is the transmission. The transmission is based on the

Lambert-Beer law for transparent objects, which states that

light traveling through a transparent material will be attenuated

exponentially [1, 2]:

t (x) = exp(−βd (x)). (2)

Here, d (x) is the scene depth and β is the attenuation

coefficient due to scattering in the medium. Note that the

observed image, I (x), scene radiance, J (x), and airlight,

A, are all vectors in ℜ3 with one intensity value per color

channel. The attenuation coefficient due to scattering, β, is
not a function of the color channel and therefore, for a given

pixel, the transmission is constant over all three color channels.

Assuming that we can obtain a good estimate of the

airlight, A, there are two unknowns in (1) that we need to

solve for: the transmission, t (x), which captures the depth

of the scene, and J (x), the clear image. This leads to an

inherent ambiguity between deducing the scene depth from

the direct transmission, which needs to be resolved. Without

additional information or assumptions about the scene, one

cannot determine if the color of the patch is caused by haze

when the object is far away or by the natural color of the

object without haze (Fig. 2).

Fig. 2. There is an inherent ambiguity between the scene depth and direct
transmission. Given a patch in the image, one cannot determine if the color
of the patch is caused by haze when the object is far away (upper box) or by
the natural color of the object without haze (lower box).



(a) Original image. (b) Dehazed image. (c) Depth map.

Fig. 1. Single image dehazing for underwater images. Note the detail revealed in the upper left quarter of the dehazed image, (b).

B. Previous Work

In order to resolve the ambiguity between the depth and

the direct transmission, many existing dehazing techniques

rely on additional hardware such as polarization filters [3, 4],

additional information such as the depth of the scene [5], or

multiple images captured under different conditions [2, 6].

Very recently, several techniques have been developed to

remove haze from a single outdoor image with no additional

information [7–10]. These methods use statistical priors on the

properties of natural images in order to remove the haze. Tan

[7] proposes to recover the clear image by maximizing the

contrast of the image over local patches. Fattal [8] exploits

the fact that the transmission and scene albedo are locally

uncorrelated to dehaze the image. He et al [9] introduce a

novel dark channel prior that is a statistical prior on the

minimum intensity color channel in an image patch. They

exploit the fact that objects in a clear image patch have at least

one color channel with very low intensity, but in a hazy patch

all color channels will have higher intensity due to airlight

addition. All three methods recover an up-to-scale scene depth

map when they solve for the dehazed image. Kratz and Nishino

[10] model the scene albedo and depth as two statistically

independent layers and use a factorial Markov random field

(MRF) to solve for the dehazed image. They provide a more

general framework that can include different priors on depth

and natural image statistics. While these single image methods

have shown very good performance in terrestrial images, only

Fattal provides results for underwater imagery.

C. Comparison with comprehensive underwater model

The model in (1) is commonly used in terrestrial image

dehazing [2, 7–9]. However, a more complete underwater

model is described by Duntley in [1, 11]:

tNr(z, θ, φ) = tN0(zt, θ, φ)e
(−α(z)r)

+N(zt, θ, φ)e
(K(z,θ,φ)r cos θ)

(

1− e(−α(z)r+K(z,θ,φ)r cos θ)
)

. (3)

In this section we compare the two models and explain un-

der which assumptions the models are equivalent. In Duntley’s

model tNr(z, θ, φ) is the radiance of the target seen by the

observer; it is a function of the depth of the observer, z, and the
zenith and azimuth angles between the observer and the target,

θ and φ, respectively. The observed radiance is a mixture of

the radiance at the subject, tN0(zt, θ, φ), and the radiance in

the water column (the airlight), N(zt, θ, φ). In these terms zt
represents the depth of the target. The attenuation coefficient,

α(z), is the sum of two terms, the scattering coefficient and the

absorption coefficient. The distance between the observer and

the target is denoted by r. The radiance attenuation function,

K(z, θ, φ), captures how the airlight changes with depth.

Duntley notes two possible simplifications to this model

[11]. First, the attenuation coefficient, α, is a constant if the

water is uniform between the subject and observer. Second,

“[b]ecause underwater sighting ranges rarely exceed 2/K,

the effect of K variation is seldom appreciable, except near

the surface.” Additionally, we note that when images are

collected horizontally with zenith angle θ ≈ π/2, the effect

of the K variation is zero. Therefore, there is a large subset

of underwater images that can be modeled using a greatly

simplified model under the assumptions that they have been

collected in uniform water, either nearly horizontally or at

sufficient depth such that vertical variation in negligible:

tNr(z, θ, φ) = tN0(zt, θ, φ)e
(−αr)

+N(zt, θ, φ)
(

1− e(−αr)
)

. (4)

Notation aside, this simplified version of the full underwater

model is almost exactly equivalent to the standard model used

for terrestrial dehazing, (1), with one exception. In the full

underwater model the attenuation coefficient, α, is the sum of

the scattering and absorption coefficients, α = αs+αa, while

in the terrestrial model only scattering is considered. Scattering

and absorption are very different physical effects. Scattering

is caused by larger suspended particles in the medium and is

largely wavelength independent, and therefore only a function

of scene depth. Absorption, however, is a function of both

scene depth and wavelength, attenuating the red color channel

much more severely than blue or green. As these are two

different phenomena, in this paper we only seek to correct

the effects of scattering and therefore will use the dehazing

model as shown in (1).



While simplified, the assumptions in this model do not im-

ply that our proposed method will not provide color correction

for the reduction in the red channel caused by absorption. Our

estimate of the airlight includes the effects of absorption on

the airlight, i.e. that the airlight is blue, not white. Therefore,

when we remove the additive airlight the color balance of the

imagery is improved, without having to additionally account

for absorption effects.

The remainder of this paper is outlined as follows. In

Section II we show that one can exploit the strong difference

in attenuation between image color channels to estimate the

depth of the scene, an important step in dehazing the image. In

Section III we discuss how the scene radiance is modeled as a

Markov random field (MRF) and how a maximum a posteriori

(MAP) estimate of the dehazed image is calculated using a

Min Cuts / Max Flow minimization algorithm. In Section IV

we propose a method for estimating the airlight and discuss

our results in Section V. Finally, in Section VI we discuss

future extensions of single image underwater dehazing.

II. ESTIMATING THE DEPTH OF AN UNDERWATER SCENE

The effects of haze are highly correlated with the range

depth of the underwater scene. The further away an object

is, the more hazy it will appear in the image. Therefore, an

accurate estimate of the scene depth can be used to dehaze

an image, assuming for now that the airlight is known. We

propose a simple, yet effective, prior to estimate the scene

depth of underwater images. This prior exploits the fact that

the attention of light in water varies greatly depending on

the color of the light. Specifically, the red color channel is

attenuated at a much higher rate than green or blue.

Our prior compares the maximum intensity of the red color

channel, to the maximum intensity in the green and blue

color channels, over a small image patch. First, we find the

difference between the maximum red channel intensity and the

maximum of the green and blue channels

D(x) = max
x∈Ω, c∈r

Ic(x)− max
x∈Ω, c∈{b,g}

Ic(x). (5)

Here Ic(x) refers to a pixel x in color channel c ∈ {r, g, b}
in the observed image, and Ω refers to a patch in the image.

Note that the image intensities have been normalized to values

between zero and one.

The estimated transmission, t̃, is found by shifting the values
of D so that the largest difference between color channels,

which represents the closest point in the foreground, is one:

t̃(x) = D(x) +
(

1−max
x

D(x)
)

. (6)

Because our prior is calculated over an image patch, it

produces a coarse initial estimate of the depth. He et al

note that a closed form solution for natural image matting

[12], can be used to refine a coarse depth prior. Natural

image matting seeks to solve a different yet mathematically

equivalent problem, in which an image, I , is modeled as a

linear combination of the background, B, and foreground, F .

Natural image matting then seeks to determine, for each pixel,

the percentage that it is composed of either the foreground

or background based on sparse user input marking sample

foreground and background regions. The mixture between

foreground and background is captured in the foreground

opacity, γ.
Ic = γcFc + (1− γc)Bc (7)

One can see that if we consider the foreground to be the

scene radiance, and the background to be the airlight, then

the foreground opacity, γ, is exactly the transmission, t.
We, therefore, can provide our initial coarse estimate of the

transmission, in place of user input, to the natural image

matting algorithm to produce a refined transmission estimate.

Fig. 3 shows the depth map generation process where (b)

shows the initial estimate of the transmission produced by

our prior and (c) shows the transmission estimate after being

refined using the natural image matting method proposed by

Levin et al [12].

Finally, in order to maintain realistic images, which tend to

contain a small amount of haze, and to prevent the algorithm

from accentuating noise in very hazy regions of the image,

we place a lower bound on the estimated transmission. This

lower bound is enforced through the parameter ω:

t̃ =

{

t̃ for t̃ ≥ ω

ω for t̃ < ω
. (8)

The figures in this paper were generated with 0.75 ≤ ω ≤ 0.95
and with a square patch size 20 ≤ Ω ≤ 60 pixels depending

on the size of the image. We found that larger input images

required larger patch sizes.

III. SCENE RADIANCE ESTIMATION

Once we have a good estimate of the scene depth we then

estimate the scene radiance. We can directly calculate J from

the observed image as follows:

J (x) =
I (x)−A

t(x)
+A. (9)

However, in order to regularize our calculation of the scene

radiance we model the true scene radiance, Jo, as a Markov

random field observed under white Gaussian noise (WGN)

J (x) = Jo (x) + w (x) (10)

where w ∼ N (0, 1). We then seek to compute the maximum

a posteriori estimate of the clear image, J̃ . This probabilistic
formulation is very common in a wide variety of early vision

problems [13].

In order to compute the maximum a posteriori estimate of

the clear image, J̃ , we maximize the posterior probability

P (Jo(x)|J(x)) ∝ P (J(x)|Jo(x))P (Jo(x)) . (11)

All MRF with a first-order grid neighborhood system have

a probability distribution that can be expressed as a Gibbs

distribution in the form [13]

P (Jo(x)) =
1

Z
exp





1

T0

∑

∀xi,xj∈N(xi)

V (xi, xj)



 (12)



(a) Original image. (b) Initial transmission.

(c) Refined transmission. (d) Dehazed image.

Fig. 3. From the original image, (a), a coarse estimate of the scene transmission is estimated based on the difference between the maximum red and blue
or green channel intensities, (b). The coarse estimate is then refined using natural image matting, (c). Finally, the clear image is estimated (d).

where Z is a normalizing factor, T0 is a free parameter referred

to as the “natural temperature” or “inverse temperature,” and

V is a potential function between a given pixel location xi and

its neighbor xj . For a potential function we selected a simple

Potts model [14] to promote spatial regularity

V (xi, xj) =

{

0 for J(xi) = J(xj)

1 for J(xi) 6= J(xj)
. (13)

Based on the additive noise model in (10) the likelihood of

the observed scene radiance, J , is defined as

P (J(x)|Jo(x)) = C exp

(

−1/2
∑

∀xi

(J(xi)− J0(xi))
2

)

(14)

where C is a normalizing constant. Therefore, we can now

find the MAP estimate by minimizing the negative log of the

posterior probability

J̃(x) = argmin
J(x)

− lnP (J(x)|Jtrue(x))

= argmin
J(x)

∑

∀xi

(J(xi)− J0(xi))
2

+η
∑

∀xi,xj∈N(xi)

V (xi, xj), (15)

where η = 2/T0 is a scaling constant. One can tune η
to increase or decrease the amount of smoothness enforced

during the estimation process. The figures in this paper were

generated with η = 1.
The minimization required in (15) can be efficiently approx-

imated using an existing graph cut minimization algorithm

[14–16].

IV. AIRLIGHT ESTIMATION

In the previous sections we assumed that an estimate of

the airlight was known. We will now show that the airlight

can be estimated using the transmission estimate, t̃. After the



(a) Depth map. (b) Original image.

Fig. 4. The airlight is estimated by finding the minimum transmission value,
marked with a white dot, in the depth map, (a). The color in the original image
is sampled at this location and is used as the airlight estimate. The location in
the original image, (b), is marked with a white dot and the sampled airlight
color is shown in the red box.

transmission estimate has been refined, but before we enforce

a lower limit on the transmission as shown in (8), we find the

pixel with the minimum estimated transmission. This pixel

represents the point in the image furthest from the camera.

We then use the intensity values at this location in the original

image as the airlight estimate.

Ã = I
(

argmin
x

t̃ (x)
)

(16)

Fig. 4 shows an example of the location used as the airlight

estimate marked as a white dot. The color sampled from the

original image is shown in the red box above the sample point.

One important requirement for airlight estimation is that

within the image there be a region that is completely haze-

opaque. This usually occurs in a region above the horizon,

in which only the water column is visible. Fig. 5 contains an

image where our method may not have properly identified the

airlight. In this image the pixel used for airlight estimation,

marked with a white dot, is not completely haze obscured.

V. RESULTS

First we compare our result with those provided by Fattal

[8] and against simple histogram equalization. Fig. 6 contains

the comparison with Fattal’s work for two underwater images.

For the image of the fish our result provides better dehazing of

the background than Fattal’s result. Our result shows more red

coloration in the two foremost fish than Fattal’s, and without

an available ground truth for the color of the fish we are not

sure which is more accurate. The image of the ship provides

a more difficult test. Our result exposes details in the lower

left corner of the image, and along the side of the shipwreck

that are less visible in Fattal’s. However, our result produces

an overly-bright background not present in the original nor

Fattal’s.

In Fig. 7 we compare our results with established his-

togram equalizations methods used to increase the contrast

of images. For comparison we use two standard MATLAB®

functions, histeq(), which performs a spatially-invariant

histogram equalization, and adapthisteq(), which per-

forms a spatially-variant adaptive histogram equalization. In

both cases the image was first converted to the L ∗ a ∗ b color

(a) Original image. (b) Dehazed image.

(c) Depth map.

Fig. 5. In this image the pixel use for airlight estimation, marked with a
white dot in (a) and (c), is not completely haze obscured. This results in a
poor airlight estimate and in turn a less-than-ideal dehazing result, (b). For
best results our airlight estimation method requires a completely haze-opaque
region to be visible in the original image

space and the equalizations were performed on the luminance

color channel. One can see that our results reveal greater image

detail than either histogram equalization results.

In order to test the color accuracy of our estimation method

we collected multiple images of a color wheel target taken at

varying distances between 3 and 6 meters from the camera in

a fresh water test tank. We then used an image of the color

wheel taken in air as the ground truth for haze correction.

Fig. 8 shows the results of this experiment where 8(a) shows

the original images collected at varying distances underwater,

scaled to the same size. For reference, the color wheel image

taken in air is shown at the far left. From each color wheel

three segments are sampled and then displayed below the

images to allow easier comparison between colors. Fig. 8(b)

shows the images after dehazing, again with the truth color

wheel on the far left, this time white balanced for better

color comparison. One can see that the dehazed images have

colors much closer to the truth image and that the colors are

fairly consistent over the different depths. Note that in this

experiment the airlight was selected manually as the images do

not contain a completely haze-obscured region for the airlight

estimate as discussed in Section IV.

Fig. 8(c) shows the depth map for the color wheel experi-

ment. Our prior provides a good depth estimate of the planar

target showing especially good results over the color wheel

itself. One problem with the depth estimate is that the white



(a) Original image. (b) Our result. (c) Fattal’s result.

(d) Original image. (e) Our result. (f) Fattal’s result.

Fig. 6. Comparison with Fattal’s method.

region of the target surrounding the color wheel is consistently

estimated to be closer than the color wheel itself. This illus-

trates one shortcoming of the proposed depth prior. The depth

prior often has difficulty determining the depth of large solid

colored objects. In most unstructured underwater environments

this should not pose much of a problem. However, it may be

a problem for specific applications.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we proposed an algorithm to dehaze underwa-

ter images from a single image. We presented a simple prior

based on the difference in attenuation among the different

color channels, which allows us to estimate the depth of a

scene. We then use this depth information to recover the scene

radiance from the hazy image by modeling the true scene

radiance as a Markov Random Field, which can be estimated

using a MAP estimator. We presented results over multiple

real underwater images and over a controlled test set where

the target distance and true colors are known.

Currently, our technique can reduce the effect of haze

caused by the scattering of light and is capable of providing

a color correction through the airlight estimate. However, the

difference in absorption among the color channels does play a

role in degrading underwater images. In a future work we hope

to develop additional methods to compensate for attenuation

in addition to scattering. We also plan to include the affects

on airlight caused by changes in the water depth from the

surface as described in Section I-C. This will further increase

the different types of underwater images our algorithm can

dehaze.

Most importantly, we note that many images collected

underwater are not collected in ambient light. Often, due to

the high absorption of light in water, images must be collected

with artificial lighting. We hope to adapt this method to work

with scenes that have been captured with artificial lighting.
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